Home
Class 12
MATHS
Evaluate int(1)/(4sin^(2) x + 9 cos^(2) ...

Evaluate `int(1)/(4sin^(2) x + 9 cos^(2) x) dx`

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the integral \( I = \int \frac{1}{4 \sin^2 x + 9 \cos^2 x} \, dx \), we will follow these steps: ### Step 1: Rewrite the integral We start with the integral: \[ I = \int \frac{1}{4 \sin^2 x + 9 \cos^2 x} \, dx \] To simplify the expression, we can multiply the numerator and the denominator by \( \sec^2 x \): \[ I = \int \frac{\sec^2 x}{4 \sin^2 x \sec^2 x + 9 \cos^2 x \sec^2 x} \, dx \] Since \( \sec^2 x = 1 + \tan^2 x \), we can rewrite the integral as: \[ I = \int \frac{\sec^2 x}{4 \tan^2 x + 9} \, dx \] ### Step 2: Factor out constants Next, we factor out the constant from the denominator: \[ I = \int \frac{1}{4} \cdot \frac{\sec^2 x}{\tan^2 x + \frac{9}{4}} \, dx \] This simplifies to: \[ I = \frac{1}{4} \int \frac{\sec^2 x}{\tan^2 x + \left(\frac{3}{2}\right)^2} \, dx \] ### Step 3: Use substitution Now, we will use the substitution \( t = \tan x \). Then, \( dt = \sec^2 x \, dx \), or \( dx = \frac{dt}{\sec^2 x} \): \[ I = \frac{1}{4} \int \frac{1}{t^2 + \left(\frac{3}{2}\right)^2} \, dt \] ### Step 4: Integrate using the arctangent formula The integral \( \int \frac{1}{t^2 + a^2} \, dt \) is known to be \( \frac{1}{a} \tan^{-1} \left( \frac{t}{a} \right) + C \): \[ I = \frac{1}{4} \cdot \frac{1}{\frac{3}{2}} \tan^{-1} \left( \frac{t}{\frac{3}{2}} \right) + C \] This simplifies to: \[ I = \frac{1}{6} \tan^{-1} \left( \frac{2t}{3} \right) + C \] ### Step 5: Substitute back for \( t \) Since we let \( t = \tan x \), we substitute back: \[ I = \frac{1}{6} \tan^{-1} \left( \frac{2 \tan x}{3} \right) + C \] ### Final Answer Thus, the final result of the integral is: \[ I = \frac{1}{6} \tan^{-1} \left( \frac{2 \tan x}{3} \right) + C \]
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRAL

    ARIHANT MATHS|Exercise Exercise For Session 1|15 Videos
  • INDEFINITE INTEGRAL

    ARIHANT MATHS|Exercise Exercise For Session 2|15 Videos
  • HYPERBOLA

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|17 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|8 Videos

Similar Questions

Explore conceptually related problems

Evaluate: int(1)/(sin^(2)x cos^(2)x)dx

Evaluate : int (1)/(" sin"^(2) x " cos"^(2) x ") ") " dx "

int(1)/(sin^(2)x-4 cos^(2)x)dx

int(dx)/(4sin^(2)x+9cos^(2)x)

Evaluate: int(1)/(sin^(4)x cos^(2)x)dx

int(1)/(4sin^(2)x+4sin x cos x+5cos^(2)x)dx

Evaluate: int(1)/(sin^(4)x+cos^(4)x)dx

Evaluate: int(1)/(4cos^(2)x+9sin^(2)x)dx

Evaluate: int(1)/(4cos^(2)x+9sin^(2)x)dx

Evaluate: int(1)/(sin^(4)x+sin^(2)x cos^(2)x+cos^(4)x)dx