Home
Class 12
MATHS
Evaluate int (sin x)/(sin 3x) dx...

Evaluate `int (sin x)/(sin 3x) dx`

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the integral \( \int \frac{\sin x}{\sin 3x} \, dx \), we can use the following steps: ### Step 1: Rewrite the Integral We start with the integral: \[ I = \int \frac{\sin x}{\sin 3x} \, dx \] ### Step 2: Use the Identity for Sine Recall the identity for sine: \[ \sin 3x = 3 \sin x - 4 \sin^3 x \] Thus, we can rewrite the integral as: \[ I = \int \frac{\sin x}{3 \sin x - 4 \sin^3 x} \, dx \] ### Step 3: Simplify the Integral Factor out \( \sin x \) from the denominator: \[ I = \int \frac{1}{3 - 4 \sin^2 x} \, dx \] ### Step 4: Use a Trigonometric Substitution Let \( u = \sin x \), then \( du = \cos x \, dx \) and \( dx = \frac{du}{\sqrt{1-u^2}} \). The limits of integration are not specified, so we can proceed with indefinite integration: \[ I = \int \frac{1}{3 - 4u^2} \cdot \frac{du}{\sqrt{1-u^2}} \] ### Step 5: Solve the Integral This integral can be solved using the method of partial fractions or trigonometric identities. We can express: \[ \frac{1}{3 - 4u^2} = \frac{1}{\sqrt{3}} \cdot \frac{1}{1 - \frac{4}{3}u^2} \] This can be integrated using the arctangent function: \[ I = \frac{1}{\sqrt{3}} \int \frac{1}{1 - \frac{4}{3}u^2} \, du \] This integral leads to: \[ I = \frac{1}{\sqrt{3}} \cdot \frac{1}{\sqrt{\frac{4}{3}}} \cdot \tan^{-1}\left(\sqrt{\frac{4}{3}} u\right) + C \] Substituting back \( u = \sin x \): \[ I = \frac{1}{2} \tan^{-1}\left(\frac{2 \sin x}{\sqrt{3}}\right) + C \] ### Final Answer Thus, the evaluated integral is: \[ \int \frac{\sin x}{\sin 3x} \, dx = \frac{1}{2} \tan^{-1}\left(\frac{2 \sin x}{\sqrt{3}}\right) + C \] ---
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRAL

    ARIHANT MATHS|Exercise Exercise For Session 1|15 Videos
  • INDEFINITE INTEGRAL

    ARIHANT MATHS|Exercise Exercise For Session 2|15 Videos
  • HYPERBOLA

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|17 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|8 Videos

Similar Questions

Explore conceptually related problems

int (sin x) / (sin3x) dx =

Evaluate: int(sin x)/(sin3x)dx

Evaluate int(sin x)/(sin 4x)dx

Evaluate: int(sin x)/(1+sin x)dx

Evaluate: int(sin x)/(sin4x)dx

Evaluate: int(sin4x)/(sin x)dx

Evaluate: int(sin x)/(sin(x-a))dx

Evaluate: int(sin x)/(sin(x-a))dx

Evaluate: int(sin(x-a))/(sin x)dx

Evaluate: int(sin x)/(2+sin2x)dx