Home
Class 12
MATHS
Evaluateint e^(x) ((1+sinx cos x)/(cos^(...

Evaluate`int e^(x) ((1+sinx cos x)/(cos^(2)x))dx`

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the integral \[ \int e^x \frac{1 + \sin x \cos x}{\cos^2 x} \, dx, \] we can start by rewriting the integrand. ### Step 1: Rewrite the integrand We can express the integrand as: \[ \frac{1 + \sin x \cos x}{\cos^2 x} = \frac{1}{\cos^2 x} + \frac{\sin x \cos x}{\cos^2 x} = \sec^2 x + \tan x. \] Thus, we can rewrite the integral as: \[ \int e^x \left( \sec^2 x + \tan x \right) \, dx. \] ### Step 2: Split the integral Now, we can split the integral into two parts: \[ \int e^x \sec^2 x \, dx + \int e^x \tan x \, dx. \] ### Step 3: Use integration by parts We will use integration by parts for both integrals. Recall that the integration by parts formula is: \[ \int u \, dv = uv - \int v \, du. \] #### For the first integral \(\int e^x \sec^2 x \, dx\): Let \(u = \sec^2 x\) and \(dv = e^x \, dx\). Then, we find: - \(du = 2 \sec^2 x \tan x \, dx\) - \(v = e^x\) Applying integration by parts: \[ \int e^x \sec^2 x \, dx = e^x \sec^2 x - \int e^x (2 \sec^2 x \tan x) \, dx. \] #### For the second integral \(\int e^x \tan x \, dx\): Let \(u = \tan x\) and \(dv = e^x \, dx\). Then, we find: - \(du = \sec^2 x \, dx\) - \(v = e^x\) Applying integration by parts: \[ \int e^x \tan x \, dx = e^x \tan x - \int e^x \sec^2 x \, dx. \] ### Step 4: Combine results Now we have: \[ \int e^x \sec^2 x \, dx + \int e^x \tan x \, dx = e^x \sec^2 x - \int e^x (2 \sec^2 x \tan x) \, dx + e^x \tan x - \int e^x \sec^2 x \, dx. \] Notice that the two integrals on the left-hand side and right-hand side will cancel each other out, leading to: \[ \int e^x \sec^2 x \, dx + \int e^x \tan x \, dx = e^x \sec^2 x + e^x \tan x + C. \] ### Final Result Thus, we can conclude that: \[ \int e^x \frac{1 + \sin x \cos x}{\cos^2 x} \, dx = e^x + \tan x + C. \]
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRAL

    ARIHANT MATHS|Exercise Exercise For Session 1|15 Videos
  • INDEFINITE INTEGRAL

    ARIHANT MATHS|Exercise Exercise For Session 2|15 Videos
  • HYPERBOLA

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|17 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|8 Videos

Similar Questions

Explore conceptually related problems

Evaluate int e^(2x) ((1+ sin 2x)/(1+cos 2x))dx

int(sinx)/(cos^(2)x)dx=

Evaluate: int e^(2x)((1+sin2x)/(1+cos2x))dx

Evaluate: int e^(2x)((1-sin2x)/(1-cos2x))dx

int(sinx)/((1+cos^(2)x))dx

int(sinx.cos^3x)/(1+cos^2x)dx

int ((1- sinx))/(cos^(2)x) dx= ?

Evaluate int(2 sin2x-cos x)/(6-cos^ (2)x-4sinx) dx .

int(dx)/(sinx cos ^(2)x)

int(sinx dx)/((3+cos^(2)x))=