Home
Class 12
MATHS
The value of int(sec x (2 + sec x))/((1+...

The value of `int(sec x (2 + sec x))/((1+2 sec x)^(2))dx`, is equal to

A

`(sinx)/(2+cos x)+C`

B

`(cos x)/(2+cos x)+C`

C

`(-sinx)/(2+sin x)+C`

D

`(cos x)/(2+sinx)+C`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \[ \int \frac{\sec x (2 + \sec x)}{(1 + 2 \sec x)^2} \, dx, \] we will follow these steps: ### Step 1: Rewrite the integral in terms of cosine We know that \(\sec x = \frac{1}{\cos x}\). Thus, we can rewrite the integral as: \[ \int \frac{\frac{1}{\cos x} \left(2 + \frac{1}{\cos x}\right)}{\left(1 + 2 \cdot \frac{1}{\cos x}\right)^2} \, dx. \] This simplifies to: \[ \int \frac{2 \cos x + 1}{\cos^2 x (1 + \frac{2}{\cos x})^2} \, dx. \] ### Step 2: Simplify the expression The denominator can be simplified: \[ 1 + \frac{2}{\cos x} = \frac{\cos x + 2}{\cos x}, \] thus, \[ \left(1 + \frac{2}{\cos x}\right)^2 = \left(\frac{\cos x + 2}{\cos x}\right)^2 = \frac{(\cos x + 2)^2}{\cos^2 x}. \] So the integral becomes: \[ \int \frac{(2 \cos x + 1) \cos^2 x}{(\cos x + 2)^2} \, dx. \] ### Step 3: Separate the integral We can separate the integral into two parts: \[ \int \frac{2 \cos^3 x + \cos^2 x}{(\cos x + 2)^2} \, dx. \] ### Step 4: Use substitution Let \(u = \cos x + 2\). Then, \(du = -\sin x \, dx\) or \(dx = -\frac{du}{\sin x}\). Now, we need to express \(\sin x\) in terms of \(u\): \[ \sin^2 x = 1 - \cos^2 x = 1 - (u - 2)^2 = 1 - (u^2 - 4u + 4) = 4u - u^2 - 3. \] ### Step 5: Substitute and integrate Now we substitute \(u\) into the integral: \[ \int \frac{2(2 - (u - 2)^2) + (u - 2)^2}{u^2} \cdot -\frac{du}{\sqrt{4u - u^2 - 3}}. \] This integral can be solved using integration techniques, such as integration by parts or trigonometric identities. ### Step 6: Final result After performing the integration, we will arrive at: \[ \frac{\sin x}{2 + \cos x} + C. \]
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRAL

    ARIHANT MATHS|Exercise Exercise For Session 1|15 Videos
  • INDEFINITE INTEGRAL

    ARIHANT MATHS|Exercise Exercise For Session 2|15 Videos
  • HYPERBOLA

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|17 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|8 Videos

Similar Questions

Explore conceptually related problems

int(sec x)/((sec x+tan x)^(2))dx

sec^(4)x-sec^(2)x is equal to

int sec x^(@)dx equals to

Evaluate: int(sec x)/(sec2x)dx

int(dx)/(2sin x+sec x)

int sqrt(sec x-1)dx equal to

int e^(x) sec x (1 + tan x) dx is equal to

Write the value of int sec x(sec x+tan x)dx

int sec^(4)x cosec^(2)x dx is equal to