Home
Class 12
MATHS
int \ 1/x{loge^(e x)*loge^(e^2x) * loge^...

`int \ 1/x{loge^(e x)*loge^(e^2x) * loge^(e^3x)}dx`

Text Solution

Verified by Experts

The correct Answer is:
`1/2 log |1+log e^(x)|-log|2+log e^(x)|+log |3+log e^(x)|+C`.
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRAL

    ARIHANT MATHS|Exercise Exercise For Session 1|15 Videos
  • INDEFINITE INTEGRAL

    ARIHANT MATHS|Exercise Exercise For Session 2|15 Videos
  • HYPERBOLA

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|17 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|8 Videos

Similar Questions

Explore conceptually related problems

int_(0)^(1)e^(2x)e^(e^(x) dx =)

int (e^(2x) +e^(-2x))/(e^(x)) dx

Evaluate int log_e(a^x)dx

lim_( x to 1) {log_e (e^(x(x-1))-e^(x(1-x))) - log_e(4x(x-1))} is equal to :

int(e^(x))/((e^(3x)-3e^(2x)-e^(x)+3))dx

The integral inte^x(f(x)+f\'(x))dx can be solved by using integration by parts such that: I=inte^xf(x)dx+inte^xf\'(x)dx=e^xf(x)-inte^xf\'(x)dx+inte^xf\'(x)dx=e^xf(x)+C , and inte^(ax)(f(x)+(f\'(x))/a)dx=e^(ax)f(x)/a+C ,Now answer the question: int{log_e(log_ex)+1/(log_ex)^2}dx is equal to (A) log_e(log_ex)+C (B) xlog_e(log_ex)-x/log_ex+C (C) x/log_ex-log_ex+C (D) log_e(log_ex)-x/log_ex+C

(i) int (e^x dx)/(e^x (e^x-1)) (ii) int e^x/((1+e^x)(2+e^x)) dx (iii) int e^x/((e^x-1)^2(e^x+2)) dx

int sqrt((e^(3x)-e^(2x))/(e^(x)+1))dx

Evaluate int log_e(a^2+x^2)dx

(i) int (dx)/(e^x+e^(-x)) (ii) int e^x/(e^(2x)+1) dx