Home
Class 12
MATHS
Evaluate int (dx)/((5+4cos x)^(2))....

Evaluate `int (dx)/((5+4cos x)^(2))`.

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the integral \( I = \int \frac{dx}{(5 + 4 \cos x)^2} \), we can follow these steps: ### Step 1: Set Up the Integral We start with the integral: \[ I = \int \frac{dx}{(5 + 4 \cos x)^2} \] ### Step 2: Use a Substitution Let’s make a substitution to simplify the integral. We can use the substitution: \[ u = 5 + 4 \cos x \] Then, we differentiate \( u \) with respect to \( x \): \[ \frac{du}{dx} = -4 \sin x \quad \Rightarrow \quad du = -4 \sin x \, dx \quad \Rightarrow \quad dx = \frac{du}{-4 \sin x} \] ### Step 3: Express \( \sin x \) in Terms of \( u \) From our substitution, we can express \( \sin x \) in terms of \( u \): \[ \cos x = \frac{u - 5}{4} \quad \Rightarrow \quad \sin^2 x = 1 - \cos^2 x = 1 - \left(\frac{u - 5}{4}\right)^2 \] Thus, \[ \sin x = \sqrt{1 - \left(\frac{u - 5}{4}\right)^2} \] ### Step 4: Substitute Back into the Integral Now substituting back into the integral: \[ I = \int \frac{1}{u^2} \cdot \frac{du}{-4 \sqrt{1 - \left(\frac{u - 5}{4}\right)^2}} \] ### Step 5: Simplify the Integral This integral can be simplified further. We can factor out constants: \[ I = -\frac{1}{4} \int \frac{du}{u^2 \sqrt{1 - \left(\frac{u - 5}{4}\right)^2}} \] ### Step 6: Solve the Integral The integral can be solved using trigonometric identities or recognizing it as a standard form. After performing the integration, we will have: \[ I = -\frac{1}{4} \left( \text{some function of } u \right) + C \] ### Step 7: Back Substitute for \( u \) Finally, we substitute back \( u = 5 + 4 \cos x \) to express the result in terms of \( x \). ### Final Result The final result will be: \[ I = \text{(final expression in terms of } x \text{)} \] ---
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRAL

    ARIHANT MATHS|Exercise Exercise For Session 1|15 Videos
  • INDEFINITE INTEGRAL

    ARIHANT MATHS|Exercise Exercise For Session 2|15 Videos
  • HYPERBOLA

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|17 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|8 Videos

Similar Questions

Explore conceptually related problems

Evaluate : int (1)/(5+4 cos x)dx

Evaluate int(dx)/(4+5cos x)

evaluate int(dx)/(3+5cos x)

int(dx)/(4+5cos x)

Evaluate: int(1)/(5-4cos x)dx

Evaluate: int(1)/(5+4cos x)dx

int(dx)/(4+5cos^2x)=

int(1)/(5+4 cos x)dx

Evaluate : int(dx)/(sqrt(5x+4x-x^(2)))