Home
Class 12
MATHS
If int (dx)/((x^(2)+a^(2))^(2))=(1)/(ka^...

If `int (dx)/((x^(2)+a^(2))^(2))=(1)/(ka^(2)){(x)/(x^(2)+a^(2))+(1)/(a) tan^(-1). (x)/(a)}+C`. Then the value of k, is

A

1

B

2

C

3

D

4

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRAL

    ARIHANT MATHS|Exercise Exercise For Session 1|15 Videos
  • INDEFINITE INTEGRAL

    ARIHANT MATHS|Exercise Exercise For Session 2|15 Videos
  • HYPERBOLA

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|17 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|8 Videos

Similar Questions

Explore conceptually related problems

int(2x^(2)+a^(2))/(x^(2)(x^(2)+a^(2)))dx=(k)/(x)+(1)/(a)Tan^(-1)((x)/(a))+c then k

int(1)/(x^(2))tan^(2)((1)/(x))dx

If int_((1)/(2))^(2)(1)/(x)cos ec^(101)(x-(1)/(x))dx=k then the value of k is:

int(x^(2)tan^(-1)x)/(1+x^(2))dx

If int(x)/(x^(2)-4x+8)dx=Klog(x^(2)-4x+8)+tan^(-1)((x-2)/(2)) + C then the value of K is

int(e^(2tan^(-1)x)(1+x)^(2)dx)/(1+x^(2))

int (((x^(2)+2)a^((x+tan^(-1)x)))/(x^(2)+1))dx=

int(1)/(sec^(2)x+2tan^(2)x)dx

int(((x^(2)+2)a^((x+tan^(-1)x)))/(x^(2)+1))dx=