Home
Class 12
MATHS
int(sqrt(4+x^(2)))/(x^(6))dx=(A(4+x^(2))...

`int(sqrt(4+x^(2)))/(x^(6))dx=(A(4+x^(2))^(3//2)(Bx^(2)-6))/(x^(5))+C`, then

A

`A=(1)/(120)`

B

`B=1`

C

`A=-(1)/(120)`

D

`B=-1`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int \frac{\sqrt{4+x^2}}{x^6} \, dx \), we will follow a systematic approach. ### Step 1: Rewrite the Integral We can rewrite the integral by separating the terms: \[ \int \frac{\sqrt{4+x^2}}{x^6} \, dx = \int \frac{\sqrt{4+x^2}}{x^2} \cdot \frac{1}{x^4} \, dx \] This allows us to simplify the expression for easier integration. ### Step 2: Substitute Let \( t = \sqrt{4+x^2} \). Then, we have: \[ t^2 = 4 + x^2 \implies x^2 = t^2 - 4 \] Differentiating both sides gives: \[ 2t \, dt = 2x \, dx \implies dx = \frac{t}{x} \, dt \] Now, we need to express \( x \) in terms of \( t \): \[ x = \sqrt{t^2 - 4} \] Thus, \[ dx = \frac{t}{\sqrt{t^2 - 4}} \, dt \] ### Step 3: Substitute into the Integral Now substituting \( t \) and \( dx \) into the integral: \[ \int \frac{t}{\sqrt{t^2 - 4}} \cdot \frac{1}{(\sqrt{t^2 - 4})^3} \cdot \frac{t}{\sqrt{t^2 - 4}} \, dt \] This simplifies to: \[ \int \frac{t^2}{(t^2 - 4)^{3/2}} \, dt \] ### Step 4: Integrate Now we can integrate: \[ \int \frac{t^2}{(t^2 - 4)^{3/2}} \, dt \] We can use integration by parts or a trigonometric substitution. However, we can also directly integrate: \[ = -\frac{1}{2(t^2 - 4)^{1/2}} + C \] ### Step 5: Back Substitute Now substitute back for \( t \): \[ = -\frac{1}{2\sqrt{4+x^2 - 4}} + C = -\frac{1}{2\sqrt{x^2}} + C = -\frac{1}{2|x|} + C \] ### Step 6: Final Form Thus, we have: \[ \int \frac{\sqrt{4+x^2}}{x^6} \, dx = -\frac{1}{2|x|} + C \] ### Comparison To compare with the given form \( \frac{A(4+x^2)^{3/2}(Bx^2 - 6)}{x^5} + C \), we can identify constants \( A \) and \( B \) based on the coefficients.
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRAL

    ARIHANT MATHS|Exercise Exercise For Session 1|15 Videos
  • INDEFINITE INTEGRAL

    ARIHANT MATHS|Exercise Exercise For Session 2|15 Videos
  • HYPERBOLA

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|17 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|8 Videos

Similar Questions

Explore conceptually related problems

int(x+2)/(sqrt(x^(2)+5x+6))dx

int(dx)/(sqrt(x^(2)-4x+6))

int(ax^(3)+bx^(2)+c)/(x^(4))dx=

int(1)/(sqrt(5-4x-2x^(2)))dx

int(dx)/(sqrt(2x^(2)+4x+6))

sqrt(x^(2)+6x-4)dx

int(dx)/(sqrt(4x^(2)-3x+5))

int(dx)/(sqrt(4x^(2)-3x+5))

int(dx)/(sqrt(4x^(2)-3x+5))

int (6x^(2)-(4)/(x^(2))) dx