Home
Class 12
MATHS
If I(m"," n)=int cos^(m)x*cos nx dx, sho...

If `I_(m"," n)=int cos^(m)x*cos nx dx`, show that `(m+n)I_(m","n)=cos^(m)x*sin nx+m I_((m-1","n-1))`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to show that \[ (m+n)I_{m,n} = \cos^m x \sin nx + m I_{m-1,n-1} \] where \[ I_{m,n} = \int \cos^m x \cos nx \, dx. \] ### Step-by-Step Solution: 1. **Define the Integral**: We start with the integral definition: \[ I_{m,n} = \int \cos^m x \cos nx \, dx. \] 2. **Apply Integration by Parts**: We can use integration by parts, where we let: - \( u = \cos^m x \) (which we will differentiate) - \( dv = \cos nx \, dx \) (which we will integrate) Then, we differentiate \( u \) and integrate \( dv \): - \( du = -m \cos^{m-1} x \sin x \, dx \) - \( v = \frac{\sin nx}{n} \) Applying integration by parts: \[ I_{m,n} = uv - \int v \, du \] becomes: \[ I_{m,n} = \cos^m x \cdot \frac{\sin nx}{n} - \int \frac{\sin nx}{n} \cdot (-m \cos^{m-1} x \sin x) \, dx. \] 3. **Simplify the Integral**: The integral simplifies to: \[ I_{m,n} = \frac{\cos^m x \sin nx}{n} + \frac{m}{n} \int \cos^{m-1} x \sin nx \sin x \, dx. \] 4. **Use the Product-to-Sum Formula**: We can use the product-to-sum identities to simplify \(\sin nx \sin x\): \[ \sin nx \sin x = \frac{1}{2} [\cos(n-1)x - \cos(n+1)x]. \] Thus, we can rewrite the integral: \[ I_{m,n} = \frac{\cos^m x \sin nx}{n} + \frac{m}{2n} \left( \int \cos^{m-1} x \cos(n-1)x \, dx - \int \cos^{m-1} x \cos(n+1)x \, dx \right). \] 5. **Identify the New Integrals**: The integrals we have now can be represented as: \[ I_{m-1,n-1} = \int \cos^{m-1} x \cos(n-1)x \, dx, \] \[ I_{m-1,n+1} = \int \cos^{m-1} x \cos(n+1)x \, dx. \] 6. **Combine the Results**: Now we can express \(I_{m,n}\) in terms of \(I_{m-1,n-1}\) and \(I_{m-1,n+1}\): \[ I_{m,n} = \frac{\cos^m x \sin nx}{n} + \frac{m}{2n} (I_{m-1,n-1} - I_{m-1,n+1}). \] 7. **Multiply by \(n\)**: Multiply the entire equation by \(n\): \[ n I_{m,n} = \cos^m x \sin nx + \frac{m}{2} (I_{m-1,n-1} - I_{m-1,n+1}). \] 8. **Rearranging**: Rearranging gives us: \[ (m+n) I_{m,n} = \cos^m x \sin nx + m I_{m-1,n-1}. \] ### Conclusion: Thus, we have shown that: \[ (m+n) I_{m,n} = \cos^m x \sin nx + m I_{m-1,n-1}. \]
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRAL

    ARIHANT MATHS|Exercise Exercise For Session 1|15 Videos
  • INDEFINITE INTEGRAL

    ARIHANT MATHS|Exercise Exercise For Session 2|15 Videos
  • HYPERBOLA

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|17 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|8 Videos

Similar Questions

Explore conceptually related problems

int sin mx cos nxdx,m!=n

sin^(m)x.cos^(n)x

If I_(m,n)=int cos^(m)theta*cos n theta and dd;theta, prove that t(m+n)I_(m,n)-mI_(m-1,n-1)=cos^(m)theta*sin n theta

If I_(m,n)=int cos^(m)x sin nxdx=f(m,n)I_(m-1)-(cos^(m)x cos nx)/(m+n), then f(m,n)=

If I_(m)=int (sin x+cos x)^(m)dx , then show that m l_(m)=(sin x+ cos x)^(m-1)*(sin x- cos x)+2(m-1) I_(m-2)

If l_(n)=int e^(mx)cos^(n)xdx then prove that (m^(2)+n^(2))I_(n)=e^(mx)*(m cos x+n sin x)cos^(n-1)x+n(n-1)l_(n)

if I_(m,n)=int(x^(m))/((log x)^(n))dx, then (m+1)I_(m,n)-nI_(m,n+1) is

If I_(m,n)= int(sinx)^(m)(cosx)^(n) dx then prove that I_(m,n) = ((sinx)^(m+1)(cosx)^(n-1))/(m+n) +(n-1)/(m+n). I_(m,n-2)

IfI_(m , n)=int_0^(pi/2)sin^m xcos^n xdx , Then show that I_(m , n)=(m-1)/(m+n)I_m-2n(m ,n in N) Hence, prove that I_(m , n)=f(x)={((n-1)(n-3)(m-5)(n-1)(n-3)(n-5))/((m+n)(m+n-2)(m+n-4))pi/4w h e nbot hma n dna r ee v e n((m-1)(m-3)(m-5)(n-1)(n-3)(n-5))/((m+n)(m+n-2)(m+n-4))

If I_(m;n)=int_(0)^((pi)/(2))sin^(m)x cos^(n)xdx then show that I_(m;n)=(m-1)/(m+n)I_(m-2;n) and find I_(m;n) in terms of different combinations of m and n.