Home
Class 12
MATHS
int x^(2)sinx dx...

`int x^(2)sinx dx`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int x^2 \sin x \, dx \), we will use the method of integration by parts. The formula for integration by parts is given by: \[ \int u \, dv = uv - \int v \, du \] ### Step 1: Choose \( u \) and \( dv \) Let: - \( u = x^2 \) (which we will differentiate) - \( dv = \sin x \, dx \) (which we will integrate) ### Step 2: Differentiate \( u \) and Integrate \( dv \) Now, we differentiate \( u \) and integrate \( dv \): - \( du = 2x \, dx \) - \( v = -\cos x \) ### Step 3: Apply the Integration by Parts Formula Substituting into the integration by parts formula: \[ \int x^2 \sin x \, dx = uv - \int v \, du \] This becomes: \[ \int x^2 \sin x \, dx = x^2 (-\cos x) - \int (-\cos x)(2x) \, dx \] Simplifying, we have: \[ \int x^2 \sin x \, dx = -x^2 \cos x + 2 \int x \cos x \, dx \] ### Step 4: Solve \( \int x \cos x \, dx \) Now we need to solve \( \int x \cos x \, dx \) using integration by parts again. Let: - \( u = x \) - \( dv = \cos x \, dx \) Then: - \( du = dx \) - \( v = \sin x \) Applying the integration by parts formula again: \[ \int x \cos x \, dx = x \sin x - \int \sin x \, dx \] We know that: \[ \int \sin x \, dx = -\cos x \] Thus: \[ \int x \cos x \, dx = x \sin x + \cos x \] ### Step 5: Substitute Back Now substituting back into our earlier equation: \[ \int x^2 \sin x \, dx = -x^2 \cos x + 2(x \sin x + \cos x) \] This simplifies to: \[ \int x^2 \sin x \, dx = -x^2 \cos x + 2x \sin x + 2\cos x + C \] where \( C \) is the constant of integration. ### Final Answer Thus, the final result of the integral is: \[ \int x^2 \sin x \, dx = -x^2 \cos x + 2x \sin x + 2\cos x + C \] ---
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • INDEFINITE INTEGRAL

    ARIHANT MATHS|Exercise Exercise For Session 5|10 Videos
  • INDEFINITE INTEGRAL

    ARIHANT MATHS|Exercise Exercise For Session 6|10 Videos
  • INDEFINITE INTEGRAL

    ARIHANT MATHS|Exercise Exercise For Session 3|24 Videos
  • HYPERBOLA

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|17 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|8 Videos

Similar Questions

Explore conceptually related problems

int x^(2)sinx^(3)dx

(1) int x^(2)(sinx^(3))dx

Knowledge Check

  • int (sin2x)/(sinx )dx = ?

    A
    `2 sin x + C`
    B
    `1/2 sin x + C`
    C
    `2 cos x + C`
    D
    `1/2 cos x + C`
  • int_(0)^(pi//4)x^(2) sinx " " dx =

    A
    `sqrt(2) + 2 + pi/(2sqrt(2) )+ pi^(2) / (16sqrt2) `
    B
    `sqrt(2) + 2 -pi/(2sqrt(2) )+ pi^(2) / (16sqrt2) `
    C
    `sqrt(2) - 2 +pi/(2sqrt(2) )+ pi^(2) / (16sqrt2) `
    D
    `sqrt(2) - 2 +pi/(2sqrt(2) )- pi^(2) / (16sqrt2) `
  • Similar Questions

    Explore conceptually related problems

    "int x^(2)*sinx^(3)dx

    int x^(2)sinx^(3)cos x^(3)dx

    Evaluate int_0^pi x^2 sinx dx

    Evaluate: int(sin2x)/((1+sinx)(2+sinx)\ dx

    (i) int (sin 2x)/((1+sin x)(2-sinx))dx (ii) int (cos x)/((1+sinx) (2-sinx))dx (iii) int (cos x)/((1-sinx)^2(2+sinx)) dx (iv) int ((3sinx-2)cosx)/(13-cos^2x-7 sinx) dx (v) int (sin theta)/((4+ cos^2 theta ) (2-sin^2 theta)) d theta.

    " (d) "int x sinx.dx=?