Home
Class 12
MATHS
int (tan^(-1)x)dx...

`int (tan^(-1)x)dx`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int \tan^{-1}(x) \, dx \), we will use integration by parts. Let's go through the steps: ### Step 1: Identify Functions for Integration by Parts We will use the formula for integration by parts: \[ \int u \, dv = uv - \int v \, du \] Here, we choose: - \( u = \tan^{-1}(x) \) (first function) - \( dv = dx \) (second function) ### Step 2: Differentiate and Integrate Now we need to find \( du \) and \( v \): - Differentiate \( u \): \[ du = \frac{1}{1 + x^2} \, dx \] - Integrate \( dv \): \[ v = x \] ### Step 3: Apply Integration by Parts Formula Substituting into the integration by parts formula: \[ \int \tan^{-1}(x) \, dx = x \tan^{-1}(x) - \int x \cdot \frac{1}{1 + x^2} \, dx \] ### Step 4: Simplify the Remaining Integral Now we need to evaluate the integral: \[ \int \frac{x}{1 + x^2} \, dx \] To solve this, we can use a substitution: Let \( t = 1 + x^2 \), then \( dt = 2x \, dx \) or \( x \, dx = \frac{dt}{2} \). ### Step 5: Change of Variables Substituting in the integral: \[ \int \frac{x}{1 + x^2} \, dx = \int \frac{1}{t} \cdot \frac{dt}{2} = \frac{1}{2} \int \frac{1}{t} \, dt \] This evaluates to: \[ \frac{1}{2} \ln |t| + C = \frac{1}{2} \ln |1 + x^2| + C \] ### Step 6: Combine Results Now we substitute this back into our expression: \[ \int \tan^{-1}(x) \, dx = x \tan^{-1}(x) - \left( \frac{1}{2} \ln(1 + x^2) \right) + C \] Thus, the final result is: \[ \int \tan^{-1}(x) \, dx = x \tan^{-1}(x) - \frac{1}{2} \ln(1 + x^2) + C \] ### Final Answer \[ \int \tan^{-1}(x) \, dx = x \tan^{-1}(x) - \frac{1}{2} \ln(1 + x^2) + C \]
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRAL

    ARIHANT MATHS|Exercise Exercise For Session 5|10 Videos
  • INDEFINITE INTEGRAL

    ARIHANT MATHS|Exercise Exercise For Session 6|10 Videos
  • INDEFINITE INTEGRAL

    ARIHANT MATHS|Exercise Exercise For Session 3|24 Videos
  • HYPERBOLA

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|17 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|8 Videos

Similar Questions

Explore conceptually related problems

Evaluate int (x+tan^(-1)x)dx

int tan^(-1)(1-x)dx

int sec(tan^(-1)x)dx

int x*tan^(-1)(x)*dx

int tan(sin^(-1)x)dx is equal to

" (i) "int(e^(tan^(-1)x)dx)/((1+x^(2))

int(tan^(-1)x)/(x^(2))*dx

Evaluate int(tan^(-1)x)/(x^(4))dx .

Evaluate the following Integrals : int(tan^(-1)x)/(x^(2))dx

int(tan^(-1)x)/(x^(2)+1)dx