Home
Class 12
MATHS
int e^(2x)*{(1+sin 2x)/(1+cos 2x)}dx...

`int e^(2x)*{(1+sin 2x)/(1+cos 2x)}dx`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int e^{2x} \cdot \frac{1 + \sin(2x)}{1 + \cos(2x)} \, dx \), we can follow these steps: ### Step 1: Substitution Let \( u = 2x \). Then, \( du = 2 \, dx \) or \( dx = \frac{du}{2} \). ### Step 2: Rewrite the Integral Substituting \( u \) into the integral gives us: \[ \int e^{2x} \cdot \frac{1 + \sin(2x)}{1 + \cos(2x)} \, dx = \int e^u \cdot \frac{1 + \sin(u)}{1 + \cos(u)} \cdot \frac{du}{2} \] This simplifies to: \[ \frac{1}{2} \int e^u \cdot \frac{1 + \sin(u)}{1 + \cos(u)} \, du \] ### Step 3: Split the Integral Now, we can split the integral into two parts: \[ \frac{1}{2} \left( \int e^u \cdot \frac{1}{1 + \cos(u)} \, du + \int e^u \cdot \frac{\sin(u)}{1 + \cos(u)} \, du \right) \] ### Step 4: Simplify the First Integral Using the identity \( 1 + \cos(u) = 2 \cos^2\left(\frac{u}{2}\right) \), we can rewrite the first integral: \[ \int e^u \cdot \frac{1}{1 + \cos(u)} \, du = \int e^u \cdot \frac{1}{2 \cos^2\left(\frac{u}{2}\right)} \, du = \frac{1}{2} \int e^u \sec^2\left(\frac{u}{2}\right) \, du \] ### Step 5: Solve the Second Integral For the second integral, we can use the identity \( \sin(u) = 2 \sin\left(\frac{u}{2}\right) \cos\left(\frac{u}{2}\right) \): \[ \int e^u \cdot \frac{\sin(u)}{1 + \cos(u)} \, du = \int e^u \cdot \frac{2 \sin\left(\frac{u}{2}\right) \cos\left(\frac{u}{2}\right)}{1 + \cos(u)} \, du \] This simplifies to: \[ \int e^u \cdot \frac{2 \sin\left(\frac{u}{2}\right) \cos\left(\frac{u}{2}\right)}{2 \cos^2\left(\frac{u}{2}\right)} \, du = \int e^u \cdot \tan\left(\frac{u}{2}\right) \, du \] ### Step 6: Integration by Parts Now we can use integration by parts on both integrals: 1. For \( \int e^u \sec^2\left(\frac{u}{2}\right) \, du \), let \( v = e^u \) and \( dw = \sec^2\left(\frac{u}{2}\right) \, du \). 2. For \( \int e^u \tan\left(\frac{u}{2}\right) \, du \), let \( v = e^u \) and \( dw = \tan\left(\frac{u}{2}\right) \, du \). ### Step 7: Combine Results After performing integration by parts, we will combine the results from both integrals and simplify. ### Step 8: Back Substitution Finally, substitute back \( u = 2x \) to express the result in terms of \( x \). ### Final Answer The final result of the integral is: \[ \frac{1}{2} e^{2x} \tan(x) + C \] where \( C \) is the constant of integration.
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRAL

    ARIHANT MATHS|Exercise Exercise For Session 5|10 Videos
  • INDEFINITE INTEGRAL

    ARIHANT MATHS|Exercise Exercise For Session 6|10 Videos
  • INDEFINITE INTEGRAL

    ARIHANT MATHS|Exercise Exercise For Session 3|24 Videos
  • HYPERBOLA

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|17 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|8 Videos

Similar Questions

Explore conceptually related problems

Evaluate: int e^(2x)((1+sin2x)/(1+cos2x))dx

Evaluate: int e^(2x)((1-sin2x)/(1-cos2x))dx

int e ^ (x) (1-sin x) / (1-cos x) dx

(i) int e^(2x) ((1+sin2x)/(1+cos2x)) dx (ii) int e^(2x) ((sin4x-2)/(1-cos4x))

int e^(x) [(2+sin 2x)/( 1+cos 2x )]dx =

Find: int e^x sqrt(1+sin2x)/(1+ cos 2x) dx.

int( sin 2x)/(1-cos^(2)x)dx

int e ^ (x) * (1 + sin x) / (1 + cos x) dx

int e ^ (x) ((1 + sin x) / (1 + cos x)) dx

int (sin 2x)/(1+cos^2x)dx=