Home
Class 12
MATHS
Let 'a' be a positive constant number. ...

Let 'a' be a positive constant number. Consider two curves `C_1: y=e^x, C_2:y=e^(a-x)`. Let S be the area of the part surrounding by `C_1, C_2` and the y axis, then `Lim_(a->0) s/a^2` equals (A) 4 (B) `1/2` (C) 0 (D) `1/4`

A

4

B

`1/2`

C

0

D

`1.4`

Text Solution

Verified by Experts

The correct Answer is:
D
Promotional Banner

Topper's Solved these Questions

  • AREA OF BOUNDED REGIONS

    ARIHANT MATHS|Exercise Exercise (More Than One Correct Option Type Questions)|5 Videos
  • AREA OF BOUNDED REGIONS

    ARIHANT MATHS|Exercise Exercise (Statement I And Ii Type Questions)|5 Videos
  • AREA OF BOUNDED REGIONS

    ARIHANT MATHS|Exercise Exercise For Session 2|20 Videos
  • BIONOMIAL THEOREM

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|21 Videos

Similar Questions

Explore conceptually related problems

Let b be a positive constant. Let two curves S_(1):e^(-x)y=1 and S_(2):e^(x)y=e^(b) . Let A be the area of the part surrounding by S_(1),S_(2) and x=0 ,then lim_(b rarr0)(3A)/(4b^(2)) is equal to

Consider the two curves C_(1);y^(2)=4x,C_(2)x^(2)+y^(2)-6x+1=0 then :

Let r be a positive constant.If two curves C_(1):y=(2x^(2))/(x^(2)+1) and C_(2):y=sqrt(r^(2)-x^(2)) intersects orthogonally then r cannot be

Let r be a positive constant.If two curves C_(1):y=(2x^(2))/(x^(2)+1) and C_(2):y=sqrt(r^(2)-x^(2)) intersect orthogonally then r cannot be

The area of the region bounded by the curves y=|x-2| , x=1, x=3 and the x-axis is (A) 3 (B) 2 (C) 1 (D) 4

Consider the curve C_(1):x^(2)-y^(2)=1 and C_(2):y^(2)=4x then ,The number of lines which are normal to C_(2) and tangent to C_(1) is

ARIHANT MATHS-AREA OF BOUNDED REGIONS-Exercise (Single Option Correct Type Questions)
  1. If the area bounded by the corve y=x^(2)+1, y=x and the pair of lines ...

    Text Solution

    |

  2. Suppose y=f(x) and y=g(x) are two continuous functiond whose graphs in...

    Text Solution

    |

  3. Let 'a' be a positive constant number. Consider two curves C1: y=e^x...

    Text Solution

    |

  4. 3 point O(0,0),P(a,a^2),Q(-b,b^2)(agt0,bgt0) are on the parabola y=x^2...

    Text Solution

    |

  5. Area enclosed by the graph of the function y= In^2x-1 lying in the 4...

    Text Solution

    |

  6. The area bounded by y = 2-|2-x| and y=3/|x| is

    Text Solution

    |

  7. Suppose g(x)=2x+1 and h(x)=4x^(2)+4x+5 and h(x)=(fog)(x). The area enc...

    Text Solution

    |

  8. The area bounded by the curves y=-sqrt(-x) and x=-sqrt(-y) where x,yle...

    Text Solution

    |

  9. y=f(x) is a function which satisfies f(0)=0, f"''(x)=f'(x) and f'(0)=1...

    Text Solution

    |

  10. Aea of the region nclosed between the curves x=y^2-1 and x=|y|sqrt(1-y...

    Text Solution

    |

  11. The area bounded by the curve y=xe^(-x);xy=0and x=c where c is the x-c...

    Text Solution

    |

  12. If (a,0), agt 0, is the point where the curve y=sin 2x-sqrt3 sin x cut...

    Text Solution

    |

  13. The curve y=ax^2+bx +c passes through the point (1,2) and its tangent ...

    Text Solution

    |

  14. A function y=f(x) satisfies the differential equation (dy)/(dx)-y= co...

    Text Solution

    |

  15. If the area bounded between X-axis and the graph of y=6x-3x^2 between ...

    Text Solution

    |

  16. Area bounded by y=f^(-1)(x) and tangent and normal drawn to it at poin...

    Text Solution

    |

  17. If f(x)=x-1 and g(x)=|f|(x)|-2|, then the area bounded by y=g(x) and t...

    Text Solution

    |

  18. Let S = {(x,y): (y(3x-1))/(x(3x-2))<0}, S'= {(x,y) in AxxB: -1 leqAleq...

    Text Solution

    |

  19. The area of the region bounded between the curves y=e||x|In|x||,x^2+y...

    Text Solution

    |

  20. A point P lying inside the curve y = sqrt(2ax-x^2) is moving such that...

    Text Solution

    |