Home
Class 12
MATHS
If 3 sin theta + 4 cos theta=5, then fin...

If `3 sin theta + 4 cos theta=5`, then find the value of `4 sin theta-3 cos theta`.

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \(3 \sin \theta + 4 \cos \theta = 5\) and find the value of \(4 \sin \theta - 3 \cos \theta\), we can follow these steps: ### Step 1: Rearrange the given equation We start with the equation: \[ 3 \sin \theta + 4 \cos \theta = 5 \] We can rearrange it to express \(4 \cos \theta\): \[ 4 \cos \theta = 5 - 3 \sin \theta \] ### Step 2: Square both sides Next, we square both sides of the equation: \[ (3 \sin \theta + 4 \cos \theta)^2 = 5^2 \] Expanding the left side: \[ (3 \sin \theta)^2 + 2(3 \sin \theta)(4 \cos \theta) + (4 \cos \theta)^2 = 25 \] This simplifies to: \[ 9 \sin^2 \theta + 24 \sin \theta \cos \theta + 16 \cos^2 \theta = 25 \] ### Step 3: Use the Pythagorean identity Using the identity \(\sin^2 \theta + \cos^2 \theta = 1\), we can substitute \(16 \cos^2 \theta\) with \(16(1 - \sin^2 \theta)\): \[ 9 \sin^2 \theta + 24 \sin \theta \cos \theta + 16(1 - \sin^2 \theta) = 25 \] This leads to: \[ 9 \sin^2 \theta + 24 \sin \theta \cos \theta + 16 - 16 \sin^2 \theta = 25 \] Combining like terms gives: \[ -7 \sin^2 \theta + 24 \sin \theta \cos \theta - 9 = 0 \] ### Step 4: Substitute \( \cos \theta \) Now, we can express \(\cos \theta\) in terms of \(\sin \theta\): From the rearranged equation \(4 \cos \theta = 5 - 3 \sin \theta\): \[ \cos \theta = \frac{5 - 3 \sin \theta}{4} \] ### Step 5: Substitute back into the equation We can substitute this expression for \(\cos \theta\) back into our equation: \[ 4 \sin \theta - 3 \left(\frac{5 - 3 \sin \theta}{4}\right) \] This simplifies to: \[ 4 \sin \theta - \frac{15 - 9 \sin \theta}{4} \] Multiplying through by 4 to eliminate the fraction: \[ 16 \sin \theta - (15 - 9 \sin \theta) = 0 \] This simplifies to: \[ 16 \sin \theta - 15 + 9 \sin \theta = 0 \] Combining the terms gives: \[ 25 \sin \theta - 15 = 0 \] ### Step 6: Solve for \(\sin \theta\) From this, we find: \[ 25 \sin \theta = 15 \implies \sin \theta = \frac{15}{25} = \frac{3}{5} \] ### Step 7: Find \(\cos \theta\) Using the Pythagorean identity: \[ \cos^2 \theta = 1 - \sin^2 \theta = 1 - \left(\frac{3}{5}\right)^2 = 1 - \frac{9}{25} = \frac{16}{25} \] Thus, \[ \cos \theta = \frac{4}{5} \] ### Step 8: Calculate \(4 \sin \theta - 3 \cos \theta\) Now we can find \(4 \sin \theta - 3 \cos \theta\): \[ 4 \sin \theta - 3 \cos \theta = 4 \left(\frac{3}{5}\right) - 3 \left(\frac{4}{5}\right) \] This simplifies to: \[ \frac{12}{5} - \frac{12}{5} = 0 \] ### Final Answer Thus, the value of \(4 \sin \theta - 3 \cos \theta\) is: \[ \boxed{0} \]
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC FUNCTIONS AND IDENTITIES

    ARIHANT MATHS|Exercise Exercise For Session 1|10 Videos
  • TRIGONOMETRIC FUNCTIONS AND IDENTITIES

    ARIHANT MATHS|Exercise Exercise For Session 2|10 Videos
  • TRIGONOMETRIC EQUATIONS AND INEQUATIONS

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|12 Videos
  • VECTOR ALGEBRA

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|9 Videos

Similar Questions

Explore conceptually related problems

If 3 sin theta + 5 cos theta =5, then the value of (5 sin theta - 3 cos theta ) is

3sin theta+4cos theta=5 then find the value of sin theta

If 3 sin theta + 4 cos theta =5 , then value of sin theta is

If (sin theta+cos theta)/(sin theta-cos theta)=3, then find the value of sin^(4)theta-cos^(4)theta

If 3cos theta=5sin theta, then find the value of 5sin theta-2sec^(3)theta+2cos theta5sin theta+2sec^(3)theta-2cos theta

If 3 sin theta + 4 cos theta = 5 , then 3 cos theta - 4 sin theta is equal to?

If sin theta cos theta = sqrt3//4 ,then the value of sin^4theta + cos^4 theta is

If (sin theta + cos theta)/(sin theta - cos theta)=3 , then the value of sin^(4)theta - cos^(4)theta is:

If 5sin^(2)theta+3cos^(2)theta=4 . Find the value of sin theta and cos theta :

If sqrt(3)sin theta=cos theta, find the value of (sin theta tan theta(1+cot theta))/(sin theta+cos theta)

ARIHANT MATHS-TRIGONOMETRIC FUNCTIONS AND IDENTITIES-Exercise (Questions Asked In Previous 13 Years Exam)
  1. If 3 sin theta + 4 cos theta=5, then find the value of 4 sin theta-3 c...

    Text Solution

    |

  2. If alpha and beta are non-zero real number such that 2(cos beta-cos al...

    Text Solution

    |

  3. Let -1/6 < theta < -pi/12 Suppose alpha1 and beta1, are the root...

    Text Solution

    |

  4. The value of sum(k=1)^(13) (1)/(sin(pi/4 + ((k-1)pi)/(6))sin(pi/4 + (k...

    Text Solution

    |

  5. Let f : (-1, 1) -> R be such that f(cos4theta) = 2/(2-sec^2theta for t...

    Text Solution

    |

  6. The number of all possible values of theta, where 0 lt theta lt pi, f...

    Text Solution

    |

  7. For 0 lt theta lt pi/2, the solution (s) of sum(m=1)^(6) cosec (the...

    Text Solution

    |

  8. If sin^ 4 x/2+cos^4 x/3 =1/5 then

    Text Solution

    |

  9. Let theta in (0,pi/4) and t1=(tan theta)^(tan theta), t2=(tan theta)6(...

    Text Solution

    |

  10. cos(alpha-beta)=1a n dcos(alpha+beta)=l/e , where alpha,betamu in [-pi...

    Text Solution

    |

  11. If 5(tan^2x - cos^2x)=2cos 2x + 9, then the value of cos4x is

    Text Solution

    |

  12. Let fk(x) = 1/k(sin^k x + cos^k x) where x in RR and k gt= 1. Then f4(...

    Text Solution

    |

  13. The expression (tanA)/(1-cotA)+(cotA)/(1-tanA) can be written as (1) s...

    Text Solution

    |

  14. If a Delta PQR " if" 3 sin P + 4 cos Q = 6 and 4 sin Q + 3 cos P =1 , ...

    Text Solution

    |

  15. If A = sin^2x + cos^4 x, then for all real x :

    Text Solution

    |

  16. Let cos (alpha+beta) = 4/5 and sin(alpha-beta)=5/13 where 0<= alpha,...

    Text Solution

    |

  17. If cosalpha+cosbeta+cosgamma=0=sinalpha+sinbeta+singamma, then which...

    Text Solution

    |

  18. A triangular park is enclosed on two sides by a fence and on the third...

    Text Solution

    |

  19. If 0 lt x lt pi and cos x + sin x = 1/2, then tan x is

    Text Solution

    |

  20. In Delta PQR , /R=pi/4, tan(P/3), tan(Q/3) are the roots of the equati...

    Text Solution

    |