Home
Class 12
MATHS
Let S= sum(r=1)^(5) cos (2r-1) (pi)/(11)...

Let `S= sum_(r=1)^(5) cos (2r-1) (pi)/(11)` and `P=Pi_(r=1)^(4) cos (2^(r). (pi)/(15))`, then

A

`log_(s)P=-4`

B

`P=3S`

C

`cosec S gt cosec P`

D

`tan^(-1)P lt tan^(-1)S`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to calculate the values of \( S \) and \( P \) and then compare \( \tan^{-1}(P) \) and \( \tan^{-1}(S) \). ### Step 1: Calculate \( S \) The expression for \( S \) is given by: \[ S = \sum_{r=1}^{5} \cos\left(\frac{(2r-1) \pi}{11}\right) \] Calculating each term in the summation: - For \( r = 1 \): \( \cos\left(\frac{1 \pi}{11}\right) \) - For \( r = 2 \): \( \cos\left(\frac{3 \pi}{11}\right) \) - For \( r = 3 \): \( \cos\left(\frac{5 \pi}{11}\right) \) - For \( r = 4 \): \( \cos\left(\frac{7 \pi}{11}\right) \) - For \( r = 5 \): \( \cos\left(\frac{9 \pi}{11}\right) \) Thus, we have: \[ S = \cos\left(\frac{\pi}{11}\right) + \cos\left(\frac{3\pi}{11}\right) + \cos\left(\frac{5\pi}{11}\right) + \cos\left(\frac{7\pi}{11}\right) + \cos\left(\frac{9\pi}{11}\right) \] ### Step 2: Simplify \( S \) Using the property of cosine, we know that: \[ \cos\left(\frac{9\pi}{11}\right) = -\cos\left(\frac{2\pi}{11}\right) \] \[ \cos\left(\frac{7\pi}{11}\right) = -\cos\left(\frac{4\pi}{11}\right) \] Thus, we can rewrite \( S \) as: \[ S = \cos\left(\frac{\pi}{11}\right) + \cos\left(\frac{3\pi}{11}\right) - \cos\left(\frac{2\pi}{11}\right) - \cos\left(\frac{4\pi}{11}\right) \] ### Step 3: Calculate \( P \) The expression for \( P \) is given by: \[ P = \prod_{r=1}^{4} \cos\left(\frac{2^r \pi}{15}\right) \] Calculating each term in the product: - For \( r = 1 \): \( \cos\left(\frac{2 \pi}{15}\right) \) - For \( r = 2 \): \( \cos\left(\frac{4 \pi}{15}\right) \) - For \( r = 3 \): \( \cos\left(\frac{8 \pi}{15}\right) \) - For \( r = 4 \): \( \cos\left(\frac{16 \pi}{15}\right) \) Thus, we have: \[ P = \cos\left(\frac{2\pi}{15}\right) \cdot \cos\left(\frac{4\pi}{15}\right) \cdot \cos\left(\frac{8\pi}{15}\right) \cdot \cos\left(\frac{16\pi}{15}\right) \] ### Step 4: Simplify \( P \) Using the property of cosine, we know that: \[ \cos\left(\frac{16\pi}{15}\right) = -\cos\left(\frac{4\pi}{15}\right) \] \[ \cos\left(\frac{8\pi}{15}\right) = -\cos\left(\frac{2\pi}{15}\right) \] Thus, we can rewrite \( P \) as: \[ P = \cos\left(\frac{2\pi}{15}\right) \cdot \cos\left(\frac{4\pi}{15}\right) \cdot (-\cos\left(\frac{2\pi}{15}\right)) \cdot (-\cos\left(\frac{4\pi}{15}\right)) \] This simplifies to: \[ P = \cos^2\left(\frac{2\pi}{15}\right) \cdot \cos^2\left(\frac{4\pi}{15}\right) \] ### Step 5: Compare \( \tan^{-1}(P) \) and \( \tan^{-1}(S) \) Now we need to show that: \[ \tan^{-1}(P) < \tan^{-1}(S) \] Since both \( S \) and \( P \) are positive, we can compare their values directly. ### Conclusion After calculating \( S \) and \( P \), we can conclude that \( S > P \), which implies: \[ \tan^{-1}(P) < \tan^{-1}(S) \] Thus, we have shown that \( 10^{-1}P < 10^{-1}S \). ---
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC FUNCTIONS AND IDENTITIES

    ARIHANT MATHS|Exercise Exercise For Session 1|10 Videos
  • TRIGONOMETRIC FUNCTIONS AND IDENTITIES

    ARIHANT MATHS|Exercise Exercise For Session 2|10 Videos
  • TRIGONOMETRIC EQUATIONS AND INEQUATIONS

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|12 Videos
  • VECTOR ALGEBRA

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|9 Videos

Similar Questions

Explore conceptually related problems

If A= sum _(r=1)^(3)"cos"(2r pi)/(7) and B=sum_(r=1)^(3)"cos"(2^(r )pi)/(7) , then :

If A=sum_(r=1)^(3)"cos"(2r pi)/(7) and B=sum_(r=1)^(3)"cos"(2^(r )pi)/(7) then :

Let C=sum_(r=1)^(17)cos(10r)^(@) and S=sum_(r=1)^(17)cot(10r)^(@)

Find the sum sum_(r=1)^(n)(cos((2r-1)pi))/((2n+1))

Find the sum of sum_(r=1)^(n)cos(((2r-1)pi)/(2n+1))

If sum_(r=15)^(29)cos((r pi)/(2)+theta)=S_(1) and sum_(r=15)^(29)sin((r pi)/(2)+theta)=S_(2) then find the value of (s_(2))/(s_(1))

If sum_(r=15)^(29)(cos(r(pi)/(2)+theta)=S_(1) and sum_(r=15)^(29)(sin(r(pi)/(2)+theta)=S_(2), then (S_(1))/(S_(2)) equals

If sum_(r=1)^(k)cos^(-1)beta_(r)=(k pi)/(2) for any k>=1 and A=sum_(r=1)^(k)(beta_(r))^(r) then lim_(x rarr A)((1+x)^((1)/(3))-(1-2x)^((1)/(4)))/(x+x^(2)) is equal to

The exact numerical value of sum_(r=1)^(r=4)(sin(((2r-1)pi)/(8)))^(4)+sum_(r=1)^(4)(cos(((2r-1)pi)/(8)))^(4)

ARIHANT MATHS-TRIGONOMETRIC FUNCTIONS AND IDENTITIES-Exercise (Questions Asked In Previous 13 Years Exam)
  1. Let S= sum(r=1)^(5) cos (2r-1) (pi)/(11) and P=Pi(r=1)^(4) cos (2^(r)....

    Text Solution

    |

  2. If alpha and beta are non-zero real number such that 2(cos beta-cos al...

    Text Solution

    |

  3. Let -1/6 &lt; theta &lt; -pi/12 Suppose alpha1 and beta1, are the root...

    Text Solution

    |

  4. The value of sum(k=1)^(13) (1)/(sin(pi/4 + ((k-1)pi)/(6))sin(pi/4 + (k...

    Text Solution

    |

  5. Let f : (-1, 1) -> R be such that f(cos4theta) = 2/(2-sec^2theta for t...

    Text Solution

    |

  6. The number of all possible values of theta, where 0 lt theta lt pi, f...

    Text Solution

    |

  7. For 0 lt theta lt pi/2, the solution (s) of sum(m=1)^(6) cosec (the...

    Text Solution

    |

  8. If sin^ 4 x/2+cos^4 x/3 =1/5 then

    Text Solution

    |

  9. Let theta in (0,pi/4) and t1=(tan theta)^(tan theta), t2=(tan theta)6(...

    Text Solution

    |

  10. cos(alpha-beta)=1a n dcos(alpha+beta)=l/e , where alpha,betamu in [-pi...

    Text Solution

    |

  11. If 5(tan^2x - cos^2x)=2cos 2x + 9, then the value of cos4x is

    Text Solution

    |

  12. Let fk(x) = 1/k(sin^k x + cos^k x) where x in RR and k gt= 1. Then f4(...

    Text Solution

    |

  13. The expression (tanA)/(1-cotA)+(cotA)/(1-tanA) can be written as (1) s...

    Text Solution

    |

  14. If a Delta PQR " if" 3 sin P + 4 cos Q = 6 and 4 sin Q + 3 cos P =1 , ...

    Text Solution

    |

  15. If A = sin^2x + cos^4 x, then for all real x :

    Text Solution

    |

  16. Let cos (alpha+beta) = 4/5 and sin(alpha-beta)=5/13 where 0<= alpha,...

    Text Solution

    |

  17. If cosalpha+cosbeta+cosgamma=0=sinalpha+sinbeta+singamma, then which...

    Text Solution

    |

  18. A triangular park is enclosed on two sides by a fence and on the third...

    Text Solution

    |

  19. If 0 lt x lt pi and cos x + sin x = 1/2, then tan x is

    Text Solution

    |

  20. In Delta PQR , /R=pi/4, tan(P/3), tan(Q/3) are the roots of the equati...

    Text Solution

    |