Home
Class 12
MATHS
If cos (beta-gamma)+cos(gamma-alpha)+cos...

If `cos (beta-gamma)+cos(gamma-alpha)+cos(alpha-beta)=-(3)/(2)` then

A

`Sigma cos alpha=0`

B

`Sigma sin alpha=0`

C

`Sigma cos alpha sin alpha=0`

D

`Sigma(cos alpha + sin alpha)=0`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( \cos(\beta - \gamma) + \cos(\gamma - \alpha) + \cos(\alpha - \beta) = -\frac{3}{2} \), we will use the cosine difference identity and manipulate the equation step by step. ### Step 1: Apply the Cosine Difference Identity We know that: \[ \cos(A - B) = \cos A \cos B + \sin A \sin B \] Using this identity, we can rewrite each cosine term: \[ \cos(\beta - \gamma) = \cos \beta \cos \gamma + \sin \beta \sin \gamma \] \[ \cos(\gamma - \alpha) = \cos \gamma \cos \alpha + \sin \gamma \sin \alpha \] \[ \cos(\alpha - \beta) = \cos \alpha \cos \beta + \sin \alpha \sin \beta \] ### Step 2: Substitute into the Equation Substituting these identities into the original equation gives: \[ (\cos \beta \cos \gamma + \sin \beta \sin \gamma) + (\cos \gamma \cos \alpha + \sin \gamma \sin \alpha) + (\cos \alpha \cos \beta + \sin \alpha \sin \beta) = -\frac{3}{2} \] ### Step 3: Combine Like Terms Now, we can combine all the terms: \[ \cos \beta \cos \gamma + \cos \gamma \cos \alpha + \cos \alpha \cos \beta + \sin \beta \sin \gamma + \sin \gamma \sin \alpha + \sin \alpha \sin \beta = -\frac{3}{2} \] ### Step 4: Rearranging the Equation We can rearrange the equation to group cosine and sine terms: \[ \cos \beta \cos \gamma + \cos \gamma \cos \alpha + \cos \alpha \cos \beta + \sin \beta \sin \gamma + \sin \gamma \sin \alpha + \sin \alpha \sin \beta + \frac{3}{2} = 0 \] ### Step 5: Recognizing the Structure Notice that the left-hand side can be recognized as a sum of squares: \[ \left(\sin \alpha + \sin \beta + \sin \gamma\right)^2 + \left(\cos \alpha + \cos \beta + \cos \gamma\right)^2 = 0 \] ### Step 6: Conclude the Values Since both terms are squares, they can only equal zero if: \[ \sin \alpha + \sin \beta + \sin \gamma = 0 \] \[ \cos \alpha + \cos \beta + \cos \gamma = 0 \] Thus, we conclude that: - The sum of the sine of the angles is zero. - The sum of the cosine of the angles is zero. ### Final Answer The values of \( \alpha, \beta, \gamma \) must satisfy: \[ \sin \alpha + \sin \beta + \sin \gamma = 0 \quad \text{and} \quad \cos \alpha + \cos \beta + \cos \gamma = 0 \]
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC FUNCTIONS AND IDENTITIES

    ARIHANT MATHS|Exercise Exercise For Session 1|10 Videos
  • TRIGONOMETRIC FUNCTIONS AND IDENTITIES

    ARIHANT MATHS|Exercise Exercise For Session 2|10 Videos
  • TRIGONOMETRIC EQUATIONS AND INEQUATIONS

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|12 Videos
  • VECTOR ALGEBRA

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|9 Videos

Similar Questions

Explore conceptually related problems

If cos(beta - gamma) * cos(gamma - alpha)* cos(alpha - beta) + 1 = 0 then prove that at least one of the angles beta - gamma, gamma- alpha and alpha - beta is an odd multiple of pi .

Prove that : cos^2 (beta-gamma) + cos^2 (gamma-alpha) + cos^2 (alpha-beta) =1+2cos (beta-gamma) cos (gamma-alpha) cos (alpha-beta) .

If alpha, beta, gamma are three real numbers and A=[(1,cos (alpha-beta),cos(alpha-gamma)),(cos (beta-alpha),1,cos (beta-gamma)),(cos (gamma-alpha),cos (gamma-beta),1)] then which of following is/are true ?

det [[1, cos (beta-alpha), cos (gamma-alpha) cos (alpha-beta), 1, cos (gamma-beta) cos (beta-alpha), cos (beta-gamma), 1]] =

If alpha,beta,gamma are three real numbers and A=[1"cos"(alpha-beta)"cos"(alpha-gamma)cos(beta-alpha)1"cos"(beta-gamma)"cos"(gamma-alpha)"cos"(gamma-beta)1] , then which of following is/are true? A is singular b. A is symmetric c. A is orthogonal d. A is not invertible

If alpha=cos alpha+i sin alpha,b=cos beta+i sin beta,c=cos gamma+i sin gamma and (b)/(c)+(c)/(a)+(a)/(b)=1 then cos(beta-gamma)+cos(gamma-alpha)+cos(alpha-beta)=

ARIHANT MATHS-TRIGONOMETRIC FUNCTIONS AND IDENTITIES-Exercise (Questions Asked In Previous 13 Years Exam)
  1. If cos (beta-gamma)+cos(gamma-alpha)+cos(alpha-beta)=-(3)/(2) then

    Text Solution

    |

  2. If alpha and beta are non-zero real number such that 2(cos beta-cos al...

    Text Solution

    |

  3. Let -1/6 < theta < -pi/12 Suppose alpha1 and beta1, are the root...

    Text Solution

    |

  4. The value of sum(k=1)^(13) (1)/(sin(pi/4 + ((k-1)pi)/(6))sin(pi/4 + (k...

    Text Solution

    |

  5. Let f : (-1, 1) -> R be such that f(cos4theta) = 2/(2-sec^2theta for t...

    Text Solution

    |

  6. The number of all possible values of theta, where 0 lt theta lt pi, f...

    Text Solution

    |

  7. For 0 lt theta lt pi/2, the solution (s) of sum(m=1)^(6) cosec (the...

    Text Solution

    |

  8. If sin^ 4 x/2+cos^4 x/3 =1/5 then

    Text Solution

    |

  9. Let theta in (0,pi/4) and t1=(tan theta)^(tan theta), t2=(tan theta)6(...

    Text Solution

    |

  10. cos(alpha-beta)=1a n dcos(alpha+beta)=l/e , where alpha,betamu in [-pi...

    Text Solution

    |

  11. If 5(tan^2x - cos^2x)=2cos 2x + 9, then the value of cos4x is

    Text Solution

    |

  12. Let fk(x) = 1/k(sin^k x + cos^k x) where x in RR and k gt= 1. Then f4(...

    Text Solution

    |

  13. The expression (tanA)/(1-cotA)+(cotA)/(1-tanA) can be written as (1) s...

    Text Solution

    |

  14. If a Delta PQR " if" 3 sin P + 4 cos Q = 6 and 4 sin Q + 3 cos P =1 , ...

    Text Solution

    |

  15. If A = sin^2x + cos^4 x, then for all real x :

    Text Solution

    |

  16. Let cos (alpha+beta) = 4/5 and sin(alpha-beta)=5/13 where 0<= alpha,...

    Text Solution

    |

  17. If cosalpha+cosbeta+cosgamma=0=sinalpha+sinbeta+singamma, then which...

    Text Solution

    |

  18. A triangular park is enclosed on two sides by a fence and on the third...

    Text Solution

    |

  19. If 0 lt x lt pi and cos x + sin x = 1/2, then tan x is

    Text Solution

    |

  20. In Delta PQR , /R=pi/4, tan(P/3), tan(Q/3) are the roots of the equati...

    Text Solution

    |