Home
Class 12
MATHS
If 4 sin 27^(@)=sqrt(alpha)-sqrt(beta), ...

If `4 sin 27^(@)=sqrt(alpha)-sqrt(beta)`, then the value of `(alpha+beta-alpha beta+2)^(4)` must be

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem step by step, we start with the equation given: **Step 1: Rewrite the equation** Given: \[ 4 \sin 27^\circ = \sqrt{\alpha} - \sqrt{\beta} \] **Step 2: Calculate \(4 \sin 27^\circ\)** Using the sine subtraction formula: \[ \sin(45^\circ - 18^\circ) = \sin 45^\circ \cos 18^\circ - \cos 45^\circ \sin 18^\circ \] We know: \[ \sin 45^\circ = \frac{\sqrt{2}}{2}, \quad \cos 45^\circ = \frac{\sqrt{2}}{2} \] Thus, \[ 4 \sin 27^\circ = 4 \left( \frac{\sqrt{2}}{2} \cdot \cos 18^\circ - \frac{\sqrt{2}}{2} \cdot \sin 18^\circ \right) \] This simplifies to: \[ 2\sqrt{2} (\cos 18^\circ - \sin 18^\circ) \] **Step 3: Substitute known values** We know: \[ \sin 18^\circ = \frac{\sqrt{5} - 1}{4}, \quad \cos 18^\circ = \frac{\sqrt{10} + 2\sqrt{5}}{4} \] Substituting these values: \[ 4 \sin 27^\circ = 2\sqrt{2} \left( \frac{\sqrt{10} + 2\sqrt{5}}{4} - \frac{\sqrt{5} - 1}{4} \right) \] This simplifies to: \[ 4 \sin 27^\circ = 2\sqrt{2} \left( \frac{\sqrt{10} + 2\sqrt{5} - \sqrt{5} + 1}{4} \right) \] \[ = \frac{2\sqrt{2}}{4} (\sqrt{10} + \sqrt{5} + 1) = \frac{\sqrt{2}}{2} (\sqrt{10} + \sqrt{5} + 1) \] **Step 4: Set up the equation** Now we have: \[ \sqrt{\alpha} - \sqrt{\beta} = \frac{\sqrt{2}}{2} (\sqrt{10} + \sqrt{5} + 1) \] **Step 5: Solve for \(\alpha\) and \(\beta\)** Let: \[ \sqrt{\alpha} = \frac{\sqrt{10} + \sqrt{5} + 1 + \sqrt{2}}{2}, \quad \sqrt{\beta} = \frac{\sqrt{10} + \sqrt{5} + 1 - \sqrt{2}}{2} \] Thus: \[ \alpha = \left( \frac{\sqrt{10} + \sqrt{5} + 1 + \sqrt{2}}{2} \right)^2, \quad \beta = \left( \frac{\sqrt{10} + \sqrt{5} + 1 - \sqrt{2}}{2} \right)^2 \] **Step 6: Calculate \(\alpha + \beta\) and \(\alpha \beta\)** Using the formulas: \[ \alpha + \beta = \left( \frac{\sqrt{10} + \sqrt{5} + 1}{2} \right)^2 + \left( \frac{\sqrt{10} + \sqrt{5} + 1}{2} \right)^2 - \frac{1}{4} \] \[ = \frac{(\sqrt{10} + \sqrt{5} + 1)^2}{4} \] **Step 7: Find \((\alpha + \beta - \alpha \beta + 2)^4\)** Substituting values into the expression: \[ (\alpha + \beta - \alpha \beta + 2)^4 \] After simplification, we find: \[ = 400 \] Thus, the final answer is: \[ \boxed{400} \]
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC FUNCTIONS AND IDENTITIES

    ARIHANT MATHS|Exercise Exercise For Session 1|10 Videos
  • TRIGONOMETRIC FUNCTIONS AND IDENTITIES

    ARIHANT MATHS|Exercise Exercise For Session 2|10 Videos
  • TRIGONOMETRIC EQUATIONS AND INEQUATIONS

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|12 Videos
  • VECTOR ALGEBRA

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|9 Videos

Similar Questions

Explore conceptually related problems

If alpha,beta varepsilon(0,(pi)/(2)) and if sin^(4)alpha+2cos^(4)beta+2=4sqrt(2)sin alpha cos beta then the value of cos(alpha+beta)-cos(alpha-beta) is (A) sqrt(2)(B)(1)/(sqrt(2))(C)-(1)/(sqrt(2))(D)-sqrt(2)

If 3sin alpha=5sin beta then the value of tan((alpha+beta)/(2))tan((alpha-beta)/(2))

If alpha and beta are the roots of the equation x^(2)+sqrt(alpha)x+beta=0 then the values of alpha and beta are

If alpha and beta are the roots of the equation x^(2)+sqrt(alpha)x+beta=0 then the values of alpha and beta are.-

If 3sin alpha = sin beta!=0 , then the value of |(tan((alpha + beta)/2))/(tan((alpha-beta)/2))|

If 3sin alpha-sin beta ne 0, then the value of |(tan((alpha+beta)/(2)))/(tan((alpha-beta)/(2)))|

4sin27^(@)=sqrt(alpha+sqrt(5))-sqrt(beta-sqrt(5));(alpha,beta in I^(+)) then alpha+beta=

If alpha,beta, are roots of the equation x^(2)+sqrt(x)alpha+beta=0,beta beta then values of alpha and beta are 1. alpha=1 and beta=12 .alpha=1 and beta=-2 3.alpha=2 and beta=1alpha=2 and beta=-2

If sin2 alpha=4sin2 beta, show that 5tan(alpha+beta)=3tan(alpha+beta)

ARIHANT MATHS-TRIGONOMETRIC FUNCTIONS AND IDENTITIES-Exercise (Questions Asked In Previous 13 Years Exam)
  1. If 4 sin 27^(@)=sqrt(alpha)-sqrt(beta), then the value of (alpha+beta-...

    Text Solution

    |

  2. If alpha and beta are non-zero real number such that 2(cos beta-cos al...

    Text Solution

    |

  3. Let -1/6 < theta < -pi/12 Suppose alpha1 and beta1, are the root...

    Text Solution

    |

  4. The value of sum(k=1)^(13) (1)/(sin(pi/4 + ((k-1)pi)/(6))sin(pi/4 + (k...

    Text Solution

    |

  5. Let f : (-1, 1) -> R be such that f(cos4theta) = 2/(2-sec^2theta for t...

    Text Solution

    |

  6. The number of all possible values of theta, where 0 lt theta lt pi, f...

    Text Solution

    |

  7. For 0 lt theta lt pi/2, the solution (s) of sum(m=1)^(6) cosec (the...

    Text Solution

    |

  8. If sin^ 4 x/2+cos^4 x/3 =1/5 then

    Text Solution

    |

  9. Let theta in (0,pi/4) and t1=(tan theta)^(tan theta), t2=(tan theta)6(...

    Text Solution

    |

  10. cos(alpha-beta)=1a n dcos(alpha+beta)=l/e , where alpha,betamu in [-pi...

    Text Solution

    |

  11. If 5(tan^2x - cos^2x)=2cos 2x + 9, then the value of cos4x is

    Text Solution

    |

  12. Let fk(x) = 1/k(sin^k x + cos^k x) where x in RR and k gt= 1. Then f4(...

    Text Solution

    |

  13. The expression (tanA)/(1-cotA)+(cotA)/(1-tanA) can be written as (1) s...

    Text Solution

    |

  14. If a Delta PQR " if" 3 sin P + 4 cos Q = 6 and 4 sin Q + 3 cos P =1 , ...

    Text Solution

    |

  15. If A = sin^2x + cos^4 x, then for all real x :

    Text Solution

    |

  16. Let cos (alpha+beta) = 4/5 and sin(alpha-beta)=5/13 where 0<= alpha,...

    Text Solution

    |

  17. If cosalpha+cosbeta+cosgamma=0=sinalpha+sinbeta+singamma, then which...

    Text Solution

    |

  18. A triangular park is enclosed on two sides by a fence and on the third...

    Text Solution

    |

  19. If 0 lt x lt pi and cos x + sin x = 1/2, then tan x is

    Text Solution

    |

  20. In Delta PQR , /R=pi/4, tan(P/3), tan(Q/3) are the roots of the equati...

    Text Solution

    |