Home
Class 12
MATHS
Show that the equation e^(sinx)-e^(-sinx...

Show that the equation `e^(sinx)-e^(-sinx)-4=0` has no real solution.

Text Solution

Verified by Experts

The correct Answer is:
does not exists any real solutions
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC FUNCTIONS AND IDENTITIES

    ARIHANT MATHS|Exercise Exercise For Session 6|8 Videos
  • TRIGONOMETRIC FUNCTIONS AND IDENTITIES

    ARIHANT MATHS|Exercise Exercise For Session 7|8 Videos
  • TRIGONOMETRIC FUNCTIONS AND IDENTITIES

    ARIHANT MATHS|Exercise Exercise For Session 4|10 Videos
  • TRIGONOMETRIC EQUATIONS AND INEQUATIONS

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|12 Videos
  • VECTOR ALGEBRA

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|9 Videos

Similar Questions

Explore conceptually related problems

Show that the equation e^(sinx)-e^(-sin x)-4=0 has no real solution.

The solution of the equation e^(sin x)-e^(-sin x)-4=0

The equation e^(sinx)-e^(-sinx)-4=0 has (A) non real roots (B) integral roots (C) rational roots (D) real and unequal roots

e^(sinx)sin(e^(x))

The solution of the equation e^(sinx) -e^(-sinx)-4 = 0 is :