Home
Class 12
MATHS
If sinx+cosx=1/5, then find the value of...

If `sinx+cosx=1/5`, then find the value of `tan 2x`.

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem where \( \sin x + \cos x = \frac{1}{5} \) and we need to find the value of \( \tan 2x \), we can follow these steps: ### Step 1: Express \( \cos x \) in terms of \( \sin x \) From the equation \( \sin x + \cos x = \frac{1}{5} \), we can express \( \cos x \) as: \[ \cos x = \frac{1}{5} - \sin x \] ### Step 2: Use the Pythagorean identity We know that \( \sin^2 x + \cos^2 x = 1 \). Substituting \( \cos x \) from Step 1: \[ \sin^2 x + \left(\frac{1}{5} - \sin x\right)^2 = 1 \] Expanding the square: \[ \sin^2 x + \left(\frac{1}{25} - \frac{2}{5}\sin x + \sin^2 x\right) = 1 \] Combining like terms: \[ 2\sin^2 x - \frac{2}{5}\sin x + \frac{1}{25} = 1 \] ### Step 3: Rearranging the equation Rearranging gives: \[ 2\sin^2 x - \frac{2}{5}\sin x + \frac{1}{25} - 1 = 0 \] Simplifying further: \[ 2\sin^2 x - \frac{2}{5}\sin x - \frac{24}{25} = 0 \] ### Step 4: Multiply through by 25 to eliminate fractions \[ 50\sin^2 x - 10\sin x - 24 = 0 \] ### Step 5: Factor or use the quadratic formula Using the quadratic formula \( \sin x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \): Here, \( a = 50, b = -10, c = -24 \): \[ \sin x = \frac{10 \pm \sqrt{(-10)^2 - 4 \cdot 50 \cdot (-24)}}{2 \cdot 50} \] Calculating the discriminant: \[ \sqrt{100 + 4800} = \sqrt{4900} = 70 \] Thus: \[ \sin x = \frac{10 \pm 70}{100} \] Calculating the two possible values: 1. \( \sin x = \frac{80}{100} = \frac{4}{5} \) 2. \( \sin x = \frac{-60}{100} = -\frac{3}{5} \) ### Step 6: Find corresponding \( \cos x \) values Using \( \cos x = \frac{1}{5} - \sin x \): 1. For \( \sin x = \frac{4}{5} \): \[ \cos x = \frac{1}{5} - \frac{4}{5} = -\frac{3}{5} \] 2. For \( \sin x = -\frac{3}{5} \): \[ \cos x = \frac{1}{5} + \frac{3}{5} = \frac{4}{5} \] ### Step 7: Calculate \( \tan x \) Using \( \tan x = \frac{\sin x}{\cos x} \): 1. For \( \sin x = \frac{4}{5}, \cos x = -\frac{3}{5} \): \[ \tan x = \frac{\frac{4}{5}}{-\frac{3}{5}} = -\frac{4}{3} \] 2. For \( \sin x = -\frac{3}{5}, \cos x = \frac{4}{5} \): \[ \tan x = \frac{-\frac{3}{5}}{\frac{4}{5}} = -\frac{3}{4} \] ### Step 8: Calculate \( \tan 2x \) Using the formula \( \tan 2x = \frac{2\tan x}{1 - \tan^2 x} \): 1. For \( \tan x = -\frac{4}{3} \): \[ \tan 2x = \frac{2 \cdot -\frac{4}{3}}{1 - \left(-\frac{4}{3}\right)^2} = \frac{-\frac{8}{3}}{1 - \frac{16}{9}} = \frac{-\frac{8}{3}}{-\frac{7}{9}} = \frac{8 \cdot 9}{3 \cdot 7} = \frac{24}{7} \] 2. For \( \tan x = -\frac{3}{4} \): \[ \tan 2x = \frac{2 \cdot -\frac{3}{4}}{1 - \left(-\frac{3}{4}\right)^2} = \frac{-\frac{3}{2}}{1 - \frac{9}{16}} = \frac{-\frac{3}{2}}{\frac{7}{16}} = \frac{-3 \cdot 16}{2 \cdot 7} = \frac{-24}{7} \] ### Final Result Thus, the values of \( \tan 2x \) are \( \frac{24}{7} \) and \( -\frac{24}{7} \).
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC FUNCTIONS AND IDENTITIES

    ARIHANT MATHS|Exercise Exercise For Session 9|10 Videos
  • TRIGONOMETRIC FUNCTIONS AND IDENTITIES

    ARIHANT MATHS|Exercise Exercise For Session 10|10 Videos
  • TRIGONOMETRIC FUNCTIONS AND IDENTITIES

    ARIHANT MATHS|Exercise Exercise For Session 7|8 Videos
  • TRIGONOMETRIC EQUATIONS AND INEQUATIONS

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|12 Videos
  • VECTOR ALGEBRA

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|9 Videos

Similar Questions

Explore conceptually related problems

If 3sinx+4cosx=5 , then the value of 90tan^2(x/2)-60tan(x/2)+110 is equal to

If sinx-cosx=0 then find the principal value of x

If 3sinx+4cosx=2 , then find the value of 3cosx-4sinx .

If sinx + cosx = a, then the value of| sinx - cosx| is

find least value of 2^sinx +2^cosx

If 8sinx- 4 = cos.x, the values of sinx are

If (sinx)/(1+cosx)+(sinx)/(1-cosx)=4,and0^(@)ltxlt90^(@) , then find the value of x .

If sinx+cosx=1/5,0lexlepi, then tan x is equal to

If f(x) = |{:(sinx,cosx,sinx),(cosx,-sinx,cosx),(x,1,1):}| find the value of 2(f'(o))+{f'(1)}^(2)