Home
Class 12
MATHS
If tan3A=(3 tan A+k tan^(3)A)/(1-3 tan^(...

If `tan3A=(3 tan A+k tan^(3)A)/(1-3 tan^(2)A)`, then k is equal to

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \( k \) in the equation: \[ \tan 3A = \frac{3 \tan A + k \tan^3 A}{1 - 3 \tan^2 A} \] ### Step 1: Use the angle addition formula for tangent We can express \( \tan 3A \) as \( \tan(2A + A) \). Using the tangent addition formula: \[ \tan(x + y) = \frac{\tan x + \tan y}{1 - \tan x \tan y} \] we can write: \[ \tan 3A = \tan(2A + A) = \frac{\tan 2A + \tan A}{1 - \tan 2A \tan A} \] ### Step 2: Find \( \tan 2A \) Using the double angle formula for tangent: \[ \tan 2A = \frac{2 \tan A}{1 - \tan^2 A} \] ### Step 3: Substitute \( \tan 2A \) into the equation Now, substitute \( \tan 2A \) into the expression for \( \tan 3A \): \[ \tan 3A = \frac{\frac{2 \tan A}{1 - \tan^2 A} + \tan A}{1 - \frac{2 \tan A}{1 - \tan^2 A} \tan A} \] ### Step 4: Simplify the numerator The numerator becomes: \[ \frac{2 \tan A + \tan A(1 - \tan^2 A)}{1 - \tan^2 A} = \frac{2 \tan A + \tan A - \tan^3 A}{1 - \tan^2 A} = \frac{3 \tan A - \tan^3 A}{1 - \tan^2 A} \] ### Step 5: Simplify the denominator The denominator simplifies to: \[ 1 - \frac{2 \tan^2 A}{1 - \tan^2 A} = \frac{(1 - \tan^2 A) - 2 \tan^2 A}{1 - \tan^2 A} = \frac{1 - 3 \tan^2 A}{1 - \tan^2 A} \] ### Step 6: Combine the results Now we can combine the results: \[ \tan 3A = \frac{3 \tan A - \tan^3 A}{1 - 3 \tan^2 A} \] ### Step 7: Compare with the original equation From the original equation, we have: \[ \tan 3A = \frac{3 \tan A + k \tan^3 A}{1 - 3 \tan^2 A} \] By comparing the numerators, we get: \[ 3 \tan A - \tan^3 A = 3 \tan A + k \tan^3 A \] ### Step 8: Solve for \( k \) Now, equate the coefficients of \( \tan^3 A \): \[ -1 = k \] Thus, we find that: \[ k = -1 \] ### Final Answer The value of \( k \) is: \[ \boxed{-1} \]
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC FUNCTIONS AND IDENTITIES

    ARIHANT MATHS|Exercise Exercise For Session 9|10 Videos
  • TRIGONOMETRIC FUNCTIONS AND IDENTITIES

    ARIHANT MATHS|Exercise Exercise For Session 10|10 Videos
  • TRIGONOMETRIC FUNCTIONS AND IDENTITIES

    ARIHANT MATHS|Exercise Exercise For Session 7|8 Videos
  • TRIGONOMETRIC EQUATIONS AND INEQUATIONS

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|12 Videos
  • VECTOR ALGEBRA

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|9 Videos

Similar Questions

Explore conceptually related problems

if A=(3tan A+k tan^(3)A)/(1-3tan^(2)A), then k

If tanA, tanB and tan C are the roots of equation x^(3)-alpha x^(2)-beta=0 ,and (1+tan^(2)A)(1+tan^(2)B)(1+tan^(2)C)=k-1 ,then k is equal to:

If tan x-tan^(2)x=1, then the value of tan^(4)x-2tan^(3)x-tan^(2)x+2tan x+k=4, then k is equal to

If tan A=(1)/(2), then tan3A=

If tan A=(1-cos B)/(sin B) , then tan3A is equal to