Home
Class 12
MATHS
if A+B+C=pi then cosA/(sinBsinC)+cosB/...

if `A+B+C=pi` then `cosA/(sinBsinC)+cosB/(sinCsinA)+cosC/(sinAsinB)=`

Text Solution

Verified by Experts

The correct Answer is:
2
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC FUNCTIONS AND IDENTITIES

    ARIHANT MATHS|Exercise Exercise For Session 11|10 Videos
  • TRIGONOMETRIC FUNCTIONS AND IDENTITIES

    ARIHANT MATHS|Exercise Exercise (Single Option Correct Type Questions)|53 Videos
  • TRIGONOMETRIC FUNCTIONS AND IDENTITIES

    ARIHANT MATHS|Exercise Exercise For Session 9|10 Videos
  • TRIGONOMETRIC EQUATIONS AND INEQUATIONS

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|12 Videos
  • VECTOR ALGEBRA

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|9 Videos

Similar Questions

Explore conceptually related problems

If A+B+C=pi , prove that : (cosA)/(sinBsinC) + (cosB)/(sinC sinA) + (cosC)/(sinA sinB) =2 .

If A+B+C=pi , prove that : cosA sinB sinC +cosB sinC sinA+cosC sinA sinB=1+cosA cosB cosC .

If A+C=2B, then (cosC-cosA)/(sinA-sinC)=

Prove that: (sin(A-B))/(sinAsinB)=(sinAcosB-cosAsinB)/(sinAsinB) (sinAcosB)/(sinAsinB)-(cosAsinB)/(sinCsinA) =cotB-cotA-cotC =0 = RHS Hence Proved.

If A+B+C=pi, prove that sin2A-sin2B+sin2C=4cosA sin B cosC .

If A+B+C=pi , prove that : sinA cosB cosC +sinB cosC cosA + sinC cosA cosB = sinA sinB sinC .

In triangleABC, (cosA)/(c cosB+bcosC)+(cosB)/(acosC+ccosA)+(cosC)/(acosB+bcosA)=

If A+B+C=180 , prove that: sinA+sinB+sinC=4cosA/2cosB/2cosC/2

If A+B+C=pi/2 , prove that: sin2A + sin2B+sin2C = 4cosA cosB cosC