Home
Class 12
MATHS
alpha, beta, gamma are real number satis...

`alpha, beta, gamma` are real number satisfying `alpha+beta+gamma=pi`. The minimum value of the given expression `sin alpha+sin beta+sin gamma` is

Text Solution

Verified by Experts

The correct Answer is:
positive
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC FUNCTIONS AND IDENTITIES

    ARIHANT MATHS|Exercise Exercise (Single Option Correct Type Questions)|53 Videos
  • TRIGONOMETRIC FUNCTIONS AND IDENTITIES

    ARIHANT MATHS|Exercise Exercise (More Than One Correct Option Type Questions)|21 Videos
  • TRIGONOMETRIC FUNCTIONS AND IDENTITIES

    ARIHANT MATHS|Exercise Exercise For Session 10|10 Videos
  • TRIGONOMETRIC EQUATIONS AND INEQUATIONS

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|12 Videos
  • VECTOR ALGEBRA

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|9 Videos

Similar Questions

Explore conceptually related problems

If alpha + beta + gamma=pi, then the value of sin ^(2) alpha + sin ^(2) beta - sin^(2) gamma is equal to

Let alpha, beta, gamma be the measures of angle such that sin alpha+sin beta+sin gamma ge 2 . Then the possible value of cos alpha + cos beta+cos gamma is

If (alpha+beta+gamma+delta)=pi then sum cos alpha cos beta-sum sin alpha sin beta=

If alpha+beta+gamma=0sin2 alpha+sin2 beta+sin2 gamma=lambda sin alpha sin beta sin gamma Find lambda.

If alpha + beta+gamma=pi , prove that sin^2 alpha + sin^ beta - sin^2 gamma = 2sinalpha sinbeta cosgamma

Given alpha+beta-gamma=pi, prove that sin^(2)alpha+sin^(2)beta-sin^(2)gamma=2sin alpha sin beta cos gamma

Given alpha+beta-gamma=pi, prove that sin^(2)alpha+sin^(2)beta-sin^(2)gamma=2sin alpha sin beta cos gamma

If alpha+gamma=2beta then the expression (sin alpha-sin gamma)/(cos gamma-cos alpha) simplifies to: