Home
Class 12
MATHS
In a Delta ABC, the minimum value of ...

In a `Delta ABC`, the minimum value of
`sec^(2). (A)/(2)+sec^(2). (B)/(2)+sec^(2). (C)/(2)` is equal to

A

3

B

4

C

5

D

6

Text Solution

AI Generated Solution

The correct Answer is:
To find the minimum value of the expression \(\sec^2\left(\frac{A}{2}\right) + \sec^2\left(\frac{B}{2}\right) + \sec^2\left(\frac{C}{2}\right)\) in a triangle \(ABC\), we can follow these steps: ### Step 1: Understand the angles in a triangle In any triangle, the sum of the internal angles is given by: \[ A + B + C = 180^\circ \] ### Step 2: Express the angles in terms of a single variable Since we are looking for the minimum value of the expression, we can assume that the angles are equal for symmetry. Therefore, let: \[ A = B = C = 60^\circ \] This is valid because \(60^\circ + 60^\circ + 60^\circ = 180^\circ\). ### Step 3: Substitute the angles into the expression Now, substituting \(A\), \(B\), and \(C\) into the expression: \[ \sec^2\left(\frac{A}{2}\right) + \sec^2\left(\frac{B}{2}\right) + \sec^2\left(\frac{C}{2}\right) = \sec^2\left(\frac{60^\circ}{2}\right) + \sec^2\left(\frac{60^\circ}{2}\right) + \sec^2\left(\frac{60^\circ}{2}\right) \] This simplifies to: \[ 3 \cdot \sec^2(30^\circ) \] ### Step 4: Calculate \(\sec^2(30^\circ)\) We know that: \[ \sec(30^\circ) = \frac{1}{\cos(30^\circ)} = \frac{1}{\frac{\sqrt{3}}{2}} = \frac{2}{\sqrt{3}} \] Thus: \[ \sec^2(30^\circ) = \left(\frac{2}{\sqrt{3}}\right)^2 = \frac{4}{3} \] ### Step 5: Calculate the total value Now, substituting back into the expression: \[ 3 \cdot \sec^2(30^\circ) = 3 \cdot \frac{4}{3} = 4 \] ### Conclusion Therefore, the minimum value of \(\sec^2\left(\frac{A}{2}\right) + \sec^2\left(\frac{B}{2}\right) + \sec^2\left(\frac{C}{2}\right)\) is: \[ \boxed{4} \]
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC FUNCTIONS AND IDENTITIES

    ARIHANT MATHS|Exercise Exercise (More Than One Correct Option Type Questions)|21 Videos
  • TRIGONOMETRIC FUNCTIONS AND IDENTITIES

    ARIHANT MATHS|Exercise Exercise (Statement I And Ii Type Questions)|11 Videos
  • TRIGONOMETRIC FUNCTIONS AND IDENTITIES

    ARIHANT MATHS|Exercise Exercise For Session 11|10 Videos
  • TRIGONOMETRIC EQUATIONS AND INEQUATIONS

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|12 Videos
  • VECTOR ALGEBRA

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|9 Videos

Similar Questions

Explore conceptually related problems

sec^(4)x-sec^(2)x is equal to

The minimum value of (8sec^(2)theta+2cos^(2))

Find the minimum value of sec^(2)theta+csc^(2)theta-4

Minimum value of y=sec^(2)2x+cot^(2)2x equals,

The minimum value of cos^(2)theta+sec^(2)theta is

Minimum value of sec^(2)theta+4cos ec^(2)theta is

Minimum value of sec^(2)theta+4cos ec^(2)theta is

sec^(2)A(1+sec2A)=2sec2A

Let AD, BE, CF be the lengths of internal bisectors of angles A, B, C respectively of triangle ABC. Then the harmonic mean of AD"sec"(A)/(2),BE"sec"(B)/(2),CF"sec"(C )/(2) is equal to :

Minimum value of sec ^(2) theta + cos ^(2) theta is

ARIHANT MATHS-TRIGONOMETRIC FUNCTIONS AND IDENTITIES-Exercise (Single Option Correct Type Questions)
  1. The minimum value of |sinx+cosx+(cosx+sinx)/(cos^(4)x-sin^(4)x)| is

    Text Solution

    |

  2. If a = cos (2012 pi), b = sec (2013 pi) and c = tan (2014 pi) then

    Text Solution

    |

  3. In a Delta ABC, the minimum value of sec^(2). (A)/(2)+sec^(2). (B)/...

    Text Solution

    |

  4. The number of ordered pairs (x, y) of real number satisfying 4x^2 - 4...

    Text Solution

    |

  5. In a DeltaABC,3 sin A+4 cos B=6 and 3 cos A+4 sinB=1, then angleC can ...

    Text Solution

    |

  6. An equilateral triangle has side length 8. The area of the region cont...

    Text Solution

    |

  7. If a cos^3 alpha +3acosalpha*sin alpha = m and a sin^3alpha +3a cos^3a...

    Text Solution

    |

  8. As shown in the figure AD is the altitude on BC and AD produced meets ...

    Text Solution

    |

  9. One side of a rectangular piece of paper is 6 cm, the adjacent sides b...

    Text Solution

    |

  10. Provethat the average of the numbers n sin n^@, n = 2,4,6...180 is co...

    Text Solution

    |

  11. A circle is inscribed inside a regular pentagon and another circle is ...

    Text Solution

    |

  12. The value of sum(r=1)^(18) cos^(2)(5r)^(@), where x^(@) denotes the x ...

    Text Solution

    |

  13. Minimum value of 4x^2-4x|sinx|-cos^2 theta is equal

    Text Solution

    |

  14. In a triangle ABC, cos 3A + cos 3B + cos 3C = 1, then find any one ang...

    Text Solution

    |

  15. (sqrt(1+sin 2A)+sqrt(1-sin 2A) )/(sqrt(1 + sin 2A)-sqrt(1-sin2A)) If |...

    Text Solution

    |

  16. For any the real thetathe maximum value ofcos^2(costheta)+sin^2(sinthe...

    Text Solution

    |

  17. Find the ragne of the expression 27^(cos 2x) 81^(sin 2x)

    Text Solution

    |

  18. ABCD is a trapezium such that AB and CD are parallel and BC bot CD. If...

    Text Solution

    |

  19. If 4nalpha =pi then cot alpha cot 2 alpha cot 3alpha ...cot (2n-1)alph...

    Text Solution

    |

  20. In DeltaABC, if (Sin A + SinB + SinC) (SinA + SinB - SinC) = 3SinA Sin...

    Text Solution

    |