Home
Class 12
MATHS
A random variable X takes values -1,0,1,...

A random variable X takes values `-1,0,1,2` with probabilities `(1+3p)/4,(1-p)/4,(1+2p)/4,(-14p)/4` respectively, where `p` varies over `R.` Then the minimum and maximum values of the mean of `X` are respectively

Promotional Banner

Similar Questions

Explore conceptually related problems

If X is a random variable taking values X_(1), X_(2)…X_(n) with probabilities P_(1), P_(2)…P_(n) respectively. Then, find Var (X).

A random variable X takes values 0, 1, 2, 3,… with probability proportional to (x+1)((1)/(5))^x . P(Xge2) equals

A random variable X takes values 0, 1, 2, 3,… with probability proportional to (x+1)((1)/(5))^x . P(Xge2) equals

A random variable X takes values 0, 1, 2, 3,… with probability proportional to (x+1)((1)/(5))^x . P(Xge2) equals

A random variable X takes values 0, 1, 2, 3,… with probability proportional to (x+1)((1)/(5))^x . P(Xge2) equals

A random variable X takes values 0, 1, 2, 3,… with probability proportional to (x+1)((1)/(5))^x . P(Xge2) equals

A random variable X takes the values 0,1,2,3,..., with probability P(X=x)=k(x+1)((1)/(5))^x , where k is a constant, then P(X=0) is.

A random variable X takes the values 0,1,2,3,..., with prbability P(X=x)=k(x+1)((1)/(5))^x , where k is a constant, then P(X=0) is.

A random variable X takes the values 0,1,2,3,..., with prbability P(X=x)=k(x+1)((1)/(5))^x , where k is a constant, then P(X=0) is.

A random variable X takes the values 0,1,2, it's mean is 0.6. If P(X=0)=0.5 then P(X=1)=