Home
Class 12
MATHS
Let x=(sum(n=1)^(44) cos n^(@))/(sum(n=1...

Let `x=(sum_(n=1)^(44) cos n^(@))/(sum_(n=1)^(44) sin n^(@))` , find the greatest integer that does not exceed.

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \[ x = \frac{\sum_{n=1}^{44} \cos n^\circ}{\sum_{n=1}^{44} \sin n^\circ} \] ### Step 1: Calculate the sum of cosines The sum of cosines can be expressed using the formula for the sum of cosines of an arithmetic series: \[ \sum_{n=1}^{N} \cos n^\circ = \frac{\sin\left(\frac{N \cdot d}{2}\right) \cdot \cos\left(a + \frac{(N-1) \cdot d}{2}\right)}{\sin\left(\frac{d}{2}\right)} \] where \(N\) is the number of terms, \(d\) is the common difference (which is \(1^\circ\) in this case), and \(a\) is the first term (which is \(1^\circ\)). For \(N = 44\), \(d = 1^\circ\), and \(a = 1^\circ\): \[ \sum_{n=1}^{44} \cos n^\circ = \frac{\sin\left(\frac{44 \cdot 1^\circ}{2}\right) \cdot \cos\left(1^\circ + \frac{(44-1) \cdot 1^\circ}{2}\right)}{\sin\left(\frac{1^\circ}{2}\right)} \] Calculating the values: \[ = \frac{\sin(22^\circ) \cdot \cos(22.5^\circ)}{\sin(0.5^\circ)} \] ### Step 2: Calculate the sum of sines Similarly, for the sum of sines: \[ \sum_{n=1}^{N} \sin n^\circ = \frac{\sin\left(\frac{N \cdot d}{2}\right) \cdot \sin\left(a + \frac{(N-1) \cdot d}{2}\right)}{\sin\left(\frac{d}{2}\right)} \] For \(N = 44\), \(d = 1^\circ\), and \(a = 1^\circ\): \[ \sum_{n=1}^{44} \sin n^\circ = \frac{\sin(22^\circ) \cdot \sin(22.5^\circ)}{\sin(0.5^\circ)} \] ### Step 3: Substitute the sums into the expression for x Now substituting these results back into the expression for \(x\): \[ x = \frac{\frac{\sin(22^\circ) \cdot \cos(22.5^\circ)}{\sin(0.5^\circ)}}{\frac{\sin(22^\circ) \cdot \sin(22.5^\circ)}{\sin(0.5^\circ)}} \] The \(\sin(22^\circ)\) and \(\sin(0.5^\circ)\) cancel out: \[ x = \frac{\cos(22.5^\circ)}{\sin(22.5^\circ)} = \cot(22.5^\circ) \] ### Step 4: Calculate the value of cot(22.5°) Using the identity: \[ \cot(22.5^\circ) = \sqrt{2} + 1 \] ### Step 5: Find the greatest integer less than or equal to x Now, we need to find the greatest integer that does not exceed \(x\): \[ x = \sqrt{2} + 1 \approx 1.414 + 1 = 2.414 \] Thus, the greatest integer that does not exceed \(x\) is: \[ \lfloor x \rfloor = 2 \] ### Final Answer The greatest integer that does not exceed \(x\) is \(2\).
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC FUNCTIONS AND IDENTITIES

    ARIHANT MATHS|Exercise Exercise (Subjective Type Questions)|22 Videos
  • TRIGONOMETRIC FUNCTIONS AND IDENTITIES

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|19 Videos
  • TRIGONOMETRIC FUNCTIONS AND IDENTITIES

    ARIHANT MATHS|Exercise Exercise (Matching Type Questions)|3 Videos
  • TRIGONOMETRIC EQUATIONS AND INEQUATIONS

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|12 Videos
  • VECTOR ALGEBRA

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|9 Videos

Similar Questions

Explore conceptually related problems

sum_(i=1)^(n)cos theta_(i)=n then sum_(i=1)^(n)sin theta_(i)

Let sum_(r=1)^(n) r^(6)=f(n)," then "sum_(n=1)^(n) (2r-1)^(6) is equal to

Let f(n)=sum_(r=0)^(n)sum_(k=r)^(n)([kr]). Also if f(n)=2047 ,then find the value of n

Let S_(n)=sum_(r=1)^(oo)(1)/(n^(r)) and sum_(n=1)^(k)(n-1)S_(n)=5050, then k=

Evaluate sum_(n=1)^n {sum_(n=1)^n (2^n+3n)} .

Let f(n)=(sum_(r=1)^(n)((1)/(r)))/(sum_(k=1)^(n)(k)/(2n-2k+1)(2n-k+1))

sum_(r=1)^(n-1)cos^(2)""(rpi)/(n) is equal to

Let sum_(r=1)^(n)r^(4)=f(n)," then " sum_(r=1)^(n) (2r-1)^(4) is equal to

Let sum_(r=1)^(n)(r^(4))=f(n). Then sum_(r=1)^(n)(2r-1)^(4) is equal to :

ARIHANT MATHS-TRIGONOMETRIC FUNCTIONS AND IDENTITIES-Exercise (Single Integer Answer Type Questions)
  1. If (sinalpha)/(sinbeta)=(cosgamma)/(cosdelta), then (sin((alpha-beta)/...

    Text Solution

    |

  2. Find the exact value of the expression tan(pi/20)-tan((3pi)/20)+tan((5...

    Text Solution

    |

  3. Let x=(sum(n=1)^(44) cos n^(@))/(sum(n=1)^(44) sin n^(@)) , find the g...

    Text Solution

    |

  4. Find theta (in degree) satisfying the equation,tan 15^@ *tan 25^@* ta...

    Text Solution

    |

  5. Find the exact value of cosec10^@ + cosec50^@ - cosec70^@.

    Text Solution

    |

  6. If cos 5 alpha=cos^5 alpha, where alpha in (0,pi/2) then find the poss...

    Text Solution

    |

  7. tan^2 (pi/16) + tan^2 ((2pi)/16) + tan^2((3pi)/16).........+tan^2((7pi...

    Text Solution

    |

  8. Compute the square of the value of the expression (4+sec 20^@)/(cosec ...

    Text Solution

    |

  9. In DeltaABC, if (sinA)/(3)=(cosB)/(3)=(tanC)/(2), then the value of ...

    Text Solution

    |

  10. It f and g be function defined by f(theta) = cos^2 theta and(theta) = ...

    Text Solution

    |

  11. If sum of the series 1+x log(|(1-sinx)/(cos x)|)((1+sin x)/(cos x))^(1...

    Text Solution

    |

  12. If 9x/costheta+5y/sintheta=56 and 9xsintheta/cos^2theta-5ycostheta/sin...

    Text Solution

    |

  13. The angle A of the DeltaABC is obtuse. x = 2635 - tan B tan C, if [x]...

    Text Solution

    |

  14. If cos3 6^(@)+cot(7 1/2@)=sqrt(n1)+sqrt(n2)+sqrt(n3)+sqrt(n1)+sqrt(n5)...

    Text Solution

    |

  15. If sin^(2)A=x and underset(r=1)overset(4)Pi sin (r A)=ax^(2)+bx^(3)+cx...

    Text Solution

    |

  16. If x , y in R satisfies (x+5)^2+(y-12)^2=(14)^2, then the minimum val...

    Text Solution

    |

  17. The least degree of a polynomial with integer coefficient whose one of...

    Text Solution

    |

  18. If A+B+C=180^(@), (sin 2A+sin 2B+sin2C)/(sinA+sinB+sinC)=k sin. (A)/(2...

    Text Solution

    |

  19. The value of f(x)=x^4+4x^3+2x^2-4x+7, when x=cot(11pi)/8 is

    Text Solution

    |

  20. In any DeltaABC, then minimum value of 2020sum(sqrt((sinA)))/((sqrt((s...

    Text Solution

    |