Home
Class 12
MATHS
If OABC is a tetrahedron such thatOA^2 +...

If OABC is a tetrahedron such that`OA^2 + BC^2 = OB^2 + CA^2 = OC^2 + AB^2` then

A

`OA bot BC`

B

`OB bot AC`

C

`OC bot AB`

D

`AB bot AC`

Text Solution

Verified by Experts

The correct Answer is:
D
Promotional Banner

Topper's Solved these Questions

  • PRODUCT OF VECTORS

    ARIHANT MATHS|Exercise Exercise For Session 1|13 Videos
  • PRODUCT OF VECTORS

    ARIHANT MATHS|Exercise Exercise For Session 2|19 Videos
  • PROBABILITY

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|55 Videos
  • PROPERTIES AND SOLUTION OF TRIANGLES

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|21 Videos

Similar Questions

Explore conceptually related problems

The OABC is a tetrahedron such that OA^2+BC^2=OB^2+CA^2=OC^2+AB^2 ,then

OABC is a tetrahedron such that OA=OB=OC=k and each of the edges OA,OB and OC is inclined at an angle theta with the other two the range of theta is

If G be the centroid of the DeltaABC and O be any other point in theplane of the triangle ABC , then prove that: OA^2 +OB^2 +OC^2=GA^2 +GB^2 +GB^2 + GC^2 + 3GO^2

OABC is a tetrahedron D and E are the mid points of the edges vec OA and vec BC. Then the vector vec DE in terms of vec OA,vec OB and vec OC

In the figure shown, OABC is a rectangle with OA=3 units, OC = 4 units. If BD = 2.5 units, then the slope of the diagonal OB is equal to

O is any point inside a rectangle ABCD. Prove that OB^(2)+OD^(2)=OA^(2)+OC^(2) . DEDUCTION In the given figure, O is a point inside a rectangle ABCD such that OB=6cm, OD=8 cm and OA=5 cm, find the length of OC.

In the /_OAB,M is the midpoint of AB,C is a point on OM, such that 2OC=CM.X is a point on the side OB such that OX=2XB .The line XC is produced to meet OA in Y.Then (OY)/(YA)=

ARIHANT MATHS-PRODUCT OF VECTORS-Exercise (Questions Asked In Previous 13 Years Exam)
  1. If OABC is a tetrahedron such thatOA^2 + BC^2 = OB^2 + CA^2 = OC^2 + A...

    Text Solution

    |

  2. Let O be the origin and let PQR be an arbitrary triangle. The point S ...

    Text Solution

    |

  3. Let O be the origin and OX, OY, OZ be three unit vectors in the direct...

    Text Solution

    |

  4. Let O be the origin, and O X , O Y , O Z be three unit vectors ...

    Text Solution

    |

  5. Let a, b and c be three unit vectors such that atimes(btimesc)=(sqrt(3...

    Text Solution

    |

  6. Let vec(a) , vec(b) and vec(c) be three non-zero vectors such that no ...

    Text Solution

    |

  7. If a, b and c are unit vectors satisfying |a-b|^(2)+|b-c|^(2)+|c-a|^(2...

    Text Solution

    |

  8. The vector(s) which is/are coplanar with vectors hat(i)+hat(j)+2hat(k)...

    Text Solution

    |

  9. Let vec a =hat i+hat j+hat k,vec b=hat i -hat j+hat k and vec c =hat ...

    Text Solution

    |

  10. Two adjacent sides of a parallelogram ABCD are given by vec(AB)=2hati+...

    Text Solution

    |

  11. Let P, Q, R and S be the points on the plane with position vectors -2h...

    Text Solution

    |

  12. If a and b are vectors in space given by a=(hat(i)-2hat(j))/(sqrt(5)) ...

    Text Solution

    |

  13. If veca,vecb,vecc and vecd are unit vectors such that (vecaxxvecb)*(...

    Text Solution

    |

  14. The edges of a parallelopiped are of unit length and are parallel to ...

    Text Solution

    |

  15. Lelt two non collinear unit vectors hata and hatb form and acute angle...

    Text Solution

    |

  16. Let the vectors PQ, QR, RS, ST, TU and UP represent the sides of a reg...

    Text Solution

    |

  17. The number of distinct real values of lambda, for which the vectors -l...

    Text Solution

    |

  18. Let veca,vecb,vecc be unit vectors such that veca+vecb+vecc=vec0. Whic...

    Text Solution

    |

  19. Let A be vector parallel to line of intersection of planes P1 and P2. ...

    Text Solution

    |

  20. Let a=hat(i)+2hat(j)+hat(k), b=hat(i)-hat(j)+hat(k), c=hat(i)+hat(j)-h...

    Text Solution

    |

  21. If vec a , vec b and vec c are three non-zero, non coplanar vecto...

    Text Solution

    |