Home
Class 12
MATHS
If (a+3b)*(7a-5b)=0 and (a-4b)*(7a-2b)=0...

If `(a+3b)*(7a-5b)=0 and (a-4b)*(7a-2b)=0`. Then, the angle between a and b is

A

`60^(@)`

B

`30^(@)`

C

`90^(@)`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem step by step, we will analyze the given conditions and derive the angle between the vectors \( \mathbf{a} \) and \( \mathbf{b} \). ### Step 1: Analyze the first condition We start with the first condition: \[ (\mathbf{a} + 3\mathbf{b}) \cdot (7\mathbf{a} - 5\mathbf{b}) = 0 \] Expanding this using the distributive property of the dot product: \[ \mathbf{a} \cdot (7\mathbf{a}) + \mathbf{a} \cdot (-5\mathbf{b}) + 3\mathbf{b} \cdot (7\mathbf{a}) + 3\mathbf{b} \cdot (-5\mathbf{b}) = 0 \] This simplifies to: \[ 7 \|\mathbf{a}\|^2 - 5 \mathbf{a} \cdot \mathbf{b} + 21 \mathbf{b} \cdot \mathbf{a} - 15 \|\mathbf{b}\|^2 = 0 \] Combining like terms gives: \[ 7 \|\mathbf{a}\|^2 + 16 \mathbf{a} \cdot \mathbf{b} - 15 \|\mathbf{b}\|^2 = 0 \tag{1} \] ### Step 2: Analyze the second condition Now, we analyze the second condition: \[ (\mathbf{a} - 4\mathbf{b}) \cdot (7\mathbf{a} - 2\mathbf{b}) = 0 \] Expanding this: \[ \mathbf{a} \cdot (7\mathbf{a}) + \mathbf{a} \cdot (-2\mathbf{b}) - 4\mathbf{b} \cdot (7\mathbf{a}) + 4\mathbf{b} \cdot (2\mathbf{b}) = 0 \] This simplifies to: \[ 7 \|\mathbf{a}\|^2 - 2 \mathbf{a} \cdot \mathbf{b} - 28 \mathbf{b} \cdot \mathbf{a} + 8 \|\mathbf{b}\|^2 = 0 \] Combining like terms gives: \[ 7 \|\mathbf{a}\|^2 - 30 \mathbf{a} \cdot \mathbf{b} + 8 \|\mathbf{b}\|^2 = 0 \tag{2} \] ### Step 3: Set up the equations Now we have two equations: 1. \( 7 \|\mathbf{a}\|^2 + 16 \mathbf{a} \cdot \mathbf{b} - 15 \|\mathbf{b}\|^2 = 0 \) 2. \( 7 \|\mathbf{a}\|^2 - 30 \mathbf{a} \cdot \mathbf{b} + 8 \|\mathbf{b}\|^2 = 0 \) ### Step 4: Subtract the equations Subtract equation (2) from equation (1): \[ (7 \|\mathbf{a}\|^2 + 16 \mathbf{a} \cdot \mathbf{b} - 15 \|\mathbf{b}\|^2) - (7 \|\mathbf{a}\|^2 - 30 \mathbf{a} \cdot \mathbf{b} + 8 \|\mathbf{b}\|^2) = 0 \] This simplifies to: \[ 46 \mathbf{a} \cdot \mathbf{b} - 23 \|\mathbf{b}\|^2 = 0 \] From this, we can derive: \[ \|\mathbf{b}\|^2 = 2 \mathbf{a} \cdot \mathbf{b} \tag{3} \] ### Step 5: Multiply and rearrange Next, we multiply equation (1) by 8: \[ 56 \|\mathbf{a}\|^2 + 128 \mathbf{a} \cdot \mathbf{b} - 120 \|\mathbf{b}\|^2 = 0 \tag{4} \] And multiply equation (2) by 15: \[ 105 \|\mathbf{a}\|^2 - 450 \mathbf{a} \cdot \mathbf{b} + 120 \|\mathbf{b}\|^2 = 0 \tag{5} \] ### Step 6: Add the equations Now, add equations (4) and (5): \[ (105 + 56) \|\mathbf{a}\|^2 + (-450 + 128) \mathbf{a} \cdot \mathbf{b} + (120 - 120) \|\mathbf{b}\|^2 = 0 \] This simplifies to: \[ 161 \|\mathbf{a}\|^2 - 322 \mathbf{a} \cdot \mathbf{b} = 0 \] From this, we can derive: \[ \|\mathbf{a}\|^2 = 2 \mathbf{a} \cdot \mathbf{b} \tag{4} \] ### Step 7: Relate the equations Now we have two equations: 1. \( \|\mathbf{b}\|^2 = 2 \mathbf{a} \cdot \mathbf{b} \) 2. \( \|\mathbf{a}\|^2 = 2 \mathbf{a} \cdot \mathbf{b} \) ### Step 8: Substitute and solve for angle Substituting \( \|\mathbf{b}\|^2 \) from (3) into (4): \[ \|\mathbf{b}\|^2 = \|\mathbf{a}\|^2 \] This implies: \[ \|\mathbf{a}\| = \|\mathbf{b}\| \] Using the cosine formula: \[ \cos \theta = \frac{\mathbf{a} \cdot \mathbf{b}}{\|\mathbf{a}\| \|\mathbf{b}\|} \] Substituting \( \|\mathbf{b}\| = \|\mathbf{a}\| \): \[ \cos \theta = \frac{\mathbf{a} \cdot \mathbf{b}}{\|\mathbf{a}\|^2} \] From our earlier equations, we can derive: \[ \mathbf{a} \cdot \mathbf{b} = \frac{1}{4} \|\mathbf{a}\|^2 \] Thus: \[ \cos \theta = \frac{1/4 \|\mathbf{a}\|^2}{\|\mathbf{a}\|^2} = \frac{1}{4} \] This gives: \[ \theta = \cos^{-1}\left(\frac{1}{2}\right) = 60^\circ \] ### Final Answer The angle between \( \mathbf{a} \) and \( \mathbf{b} \) is \( 60^\circ \). ---
Promotional Banner

Topper's Solved these Questions

  • PRODUCT OF VECTORS

    ARIHANT MATHS|Exercise Exercise For Session 1|13 Videos
  • PRODUCT OF VECTORS

    ARIHANT MATHS|Exercise Exercise For Session 2|19 Videos
  • PROBABILITY

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|55 Videos
  • PROPERTIES AND SOLUTION OF TRIANGLES

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|21 Videos

Similar Questions

Explore conceptually related problems

If a+b+c=0" and "abs(a)=3, abs(b)=5" and "abs(c)=7 then the angle between a and b is

If a+b+c=0 and |a|=5, |b|=3 and |c|=7 , then angle between a and b is

If a and b are the two vectors such that |a|-3sqrt(3),|b|=4 and |a+b|=sqrt(7) , then the angle between a and b is

The vector (vec a+3vec b) is perpendicular to (7vec a-5vec b) and (vec a-4vec b) is perpendicular to (7vec a-2vec b). The angle between vec a and vec b is :

ARIHANT MATHS-PRODUCT OF VECTORS-Exercise (Questions Asked In Previous 13 Years Exam)
  1. If (a+3b)*(7a-5b)=0 and (a-4b)*(7a-2b)=0. Then, the angle between a an...

    Text Solution

    |

  2. Let O be the origin and let PQR be an arbitrary triangle. The point S ...

    Text Solution

    |

  3. Let O be the origin and OX, OY, OZ be three unit vectors in the direct...

    Text Solution

    |

  4. Let O be the origin, and O X , O Y , O Z be three unit vectors ...

    Text Solution

    |

  5. Let a, b and c be three unit vectors such that atimes(btimesc)=(sqrt(3...

    Text Solution

    |

  6. Let vec(a) , vec(b) and vec(c) be three non-zero vectors such that no ...

    Text Solution

    |

  7. If a, b and c are unit vectors satisfying |a-b|^(2)+|b-c|^(2)+|c-a|^(2...

    Text Solution

    |

  8. The vector(s) which is/are coplanar with vectors hat(i)+hat(j)+2hat(k)...

    Text Solution

    |

  9. Let vec a =hat i+hat j+hat k,vec b=hat i -hat j+hat k and vec c =hat ...

    Text Solution

    |

  10. Two adjacent sides of a parallelogram ABCD are given by vec(AB)=2hati+...

    Text Solution

    |

  11. Let P, Q, R and S be the points on the plane with position vectors -2h...

    Text Solution

    |

  12. If a and b are vectors in space given by a=(hat(i)-2hat(j))/(sqrt(5)) ...

    Text Solution

    |

  13. If veca,vecb,vecc and vecd are unit vectors such that (vecaxxvecb)*(...

    Text Solution

    |

  14. The edges of a parallelopiped are of unit length and are parallel to ...

    Text Solution

    |

  15. Lelt two non collinear unit vectors hata and hatb form and acute angle...

    Text Solution

    |

  16. Let the vectors PQ, QR, RS, ST, TU and UP represent the sides of a reg...

    Text Solution

    |

  17. The number of distinct real values of lambda, for which the vectors -l...

    Text Solution

    |

  18. Let veca,vecb,vecc be unit vectors such that veca+vecb+vecc=vec0. Whic...

    Text Solution

    |

  19. Let A be vector parallel to line of intersection of planes P1 and P2. ...

    Text Solution

    |

  20. Let a=hat(i)+2hat(j)+hat(k), b=hat(i)-hat(j)+hat(k), c=hat(i)+hat(j)-h...

    Text Solution

    |

  21. If vec a , vec b and vec c are three non-zero, non coplanar vecto...

    Text Solution

    |