Home
Class 12
MATHS
A force F=2hat(i)+hat(j)-hat(k) acts at ...

A force `F=2hat(i)+hat(j)-hat(k)` acts at point A whose position vector is `2hat(i)-hat(j)`. Find the moment of force F about the origin.

Text Solution

AI Generated Solution

The correct Answer is:
To find the moment of the force \( \mathbf{F} \) about the origin, we will follow these steps: ### Step 1: Identify the vectors The force vector \( \mathbf{F} \) is given as: \[ \mathbf{F} = 2\hat{i} + \hat{j} - \hat{k} \] The position vector \( \mathbf{A} \) at which the force acts is given as: \[ \mathbf{A} = 2\hat{i} - \hat{j} \] ### Step 2: Determine the position vector from the origin to point A The position vector from the origin \( O \) to point \( A \) is simply the vector \( \mathbf{A} \): \[ \mathbf{R} = \mathbf{A} - \mathbf{O} = (2\hat{i} - \hat{j}) - (0\hat{i} + 0\hat{j} + 0\hat{k}) = 2\hat{i} - \hat{j} \] ### Step 3: Calculate the moment of the force about the origin The moment \( \mathbf{M} \) of the force about the origin is given by the cross product of the position vector \( \mathbf{R} \) and the force vector \( \mathbf{F} \): \[ \mathbf{M} = \mathbf{F} \times \mathbf{R} \] Substituting the vectors: \[ \mathbf{M} = (2\hat{i} + \hat{j} - \hat{k}) \times (2\hat{i} - \hat{j}) \] ### Step 4: Set up the determinant for the cross product We can compute the cross product using the determinant of a matrix: \[ \mathbf{M} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 2 & 1 & -1 \\ 2 & -1 & 0 \end{vmatrix} \] ### Step 5: Calculate the determinant Expanding the determinant along the first row: \[ \mathbf{M} = \hat{i} \begin{vmatrix} 1 & -1 \\ -1 & 0 \end{vmatrix} - \hat{j} \begin{vmatrix} 2 & -1 \\ 2 & 0 \end{vmatrix} + \hat{k} \begin{vmatrix} 2 & 1 \\ 2 & -1 \end{vmatrix} \] Calculating each of these 2x2 determinants: 1. For \( \hat{i} \): \[ \begin{vmatrix} 1 & -1 \\ -1 & 0 \end{vmatrix} = (1)(0) - (-1)(-1) = 0 - 1 = -1 \] 2. For \( \hat{j} \): \[ \begin{vmatrix} 2 & -1 \\ 2 & 0 \end{vmatrix} = (2)(0) - (-1)(2) = 0 + 2 = 2 \] 3. For \( \hat{k} \): \[ \begin{vmatrix} 2 & 1 \\ 2 & -1 \end{vmatrix} = (2)(-1) - (1)(2) = -2 - 2 = -4 \] ### Step 6: Combine the results Putting it all together: \[ \mathbf{M} = -1\hat{i} - 2\hat{j} - 4\hat{k} \] Thus, the moment of the force about the origin is: \[ \mathbf{M} = -\hat{i} - 2\hat{j} - 4\hat{k} \] ### Final Answer The moment of force \( \mathbf{F} \) about the origin is: \[ \mathbf{M} = -\hat{i} - 2\hat{j} - 4\hat{k} \] ---
Promotional Banner

Topper's Solved these Questions

  • PRODUCT OF VECTORS

    ARIHANT MATHS|Exercise Exercise For Session 3|10 Videos
  • PRODUCT OF VECTORS

    ARIHANT MATHS|Exercise Exercise For Session 4|10 Videos
  • PRODUCT OF VECTORS

    ARIHANT MATHS|Exercise Exercise For Session 1|13 Videos
  • PROBABILITY

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|55 Videos
  • PROPERTIES AND SOLUTION OF TRIANGLES

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|21 Videos

Similar Questions

Explore conceptually related problems

Let vec(F)=2hat(i)+4hat(j)+3hat(k) at the point P with position vector hat(i)-hat(j)+3hat(k) . Find the moment of vec(F) about the line through the origin O in the direction of the vector vec(a)=hat(i)+2hat(j)+2hat(k) .

The torque of a force F = 2 hat(i) - 3 hat(j) +5 hat(k) acting at a point whose position vector r = 3 hat(i) - 3 hat(j) +5 hat(k) about the origin is

Forces 2hat(i)+hat(j), 2hat(i)-3hat(j)+6hat(k) and hat(i)+2hat(j)-hat(k) act at a point P, with position vector 4hat(i)-3hat(j)-hat(k) . Find the moment of the resultant of these force about the point Q whose position vector is 6hat(i)+hat(j)-3hat(k) .

A force F= 3hat(i) + 4hat(j) - 3hat(k) is applied at the point P. whose position vector is r= 2 hat(i) -2hat(j) - 3hat(k) . What is the magnitude of the moment of the force about the origin?

The force 7 hat i+ 3 hat j - 5 hat k acts on a particle whose position vector is hat i- hat j + hat k . What is the torque of a given force about the origin ?

A force vec(F)=3hat(i)+4 hat(j)-3hat(k) is applied at the point P, whose position vector is vec(r) = hat(2i)-2hat(j)-3hat(k) . What is the magnitude of the moment of the force about the origin ?

Find the torque of a force vecF=(2hat(i) +hat(j)-3hat(k))N about a point O. The position vector of point of application of force about O is vecr = (2 hat(i) + 3 hat(j) - hat(k))m .

Find the torque of a force F=(hat(i)+2 hat(j)-3hat(k))N about a point O. The position vector of point of application of force about O is r=(2hat(i)+3hat(j)-hat(k))m .

A force (hat(i)-2hat(j)+3hat(k)) acts on a particle of position vector (3hat(i)+2hat(j)+hat(k)) . Calculate the torque acting on the particle.

A force (hat(i)-2hat(j)+3hat(k)) acts on a particle of position vector (3hat(i)+2hat(j)+hat(k)) . Calculate the hat(j)^(th) component of the torque acting on the particle.

ARIHANT MATHS-PRODUCT OF VECTORS-Exercise For Session 2
  1. Find | vec axx vec b| , if vec a= hat i-7 hat j+7 hat ka n d vec b=3 ...

    Text Solution

    |

  2. Find the values of gamma and mu for which (2hati+6hatj+27hatk)xx(hati+...

    Text Solution

    |

  3. If a=2hat(i)+3hat(j)-hat(k), b=-hat(i)+2hat(j)-4hat(k), c=hat(i)+hat(j...

    Text Solution

    |

  4. Prove that ( vec adot hat i)( vec axx hat i)+( vec adotj)( vec axx hat...

    Text Solution

    |

  5. If vecaxxvecb=veccxxvecd and vecaxxvecc=vecbxxvecd then show that veca...

    Text Solution

    |

  6. If ( vec axx vec b)^2+( vec adot vec b)^2=144a n d| vec a|=4, then fin...

    Text Solution

    |

  7. If |a|=2,|b|=7 and vec ax vec b=3 hat i+2 hat j+6 hat k , find the...

    Text Solution

    |

  8. Let the vectors vec aa n d vec b be such that | vec a|=3| vec b|=(sqr...

    Text Solution

    |

  9. If |veca|=sqrt(26), |vecb|=7 and |vecaxxvecb|=35, find veca.vecb

    Text Solution

    |

  10. Find a unit vector perpendicular to the plane of two vectors a=hat(i)-...

    Text Solution

    |

  11. Find a vector of magnitude 15, which is perpendicular to both the vect...

    Text Solution

    |

  12. Let -> a= hat i+4 hat j+2 hat k , -> b=3 hat i-2 hat j+7 hat k and...

    Text Solution

    |

  13. Let A,B and C be the unit vectors . Suppose that A.B=A.C =0 and the a...

    Text Solution

    |

  14. Find the area of the triangle whose adjacent sides are determined by t...

    Text Solution

    |

  15. Find the area of parallelogram whose adjacent sides are represented by...

    Text Solution

    |

  16. What is the area of the parallelogram having diagonals 3hat(i) + hat(j...

    Text Solution

    |

  17. A force F=2hat(i)+hat(j)-hat(k) acts at point A whose position vector...

    Text Solution

    |

  18. Find the moment of vec F about point (2, -1, 3), where force vec ...

    Text Solution

    |

  19. Forces 2hat(i)+hat(j), 2hat(i)-3hat(j)+6hat(k) and hat(i)+2hat(j)-hat(...

    Text Solution

    |