Home
Class 12
MATHS
Forces 2hat(i)+hat(j), 2hat(i)-3hat(j)+6...

Forces `2hat(i)+hat(j), 2hat(i)-3hat(j)+6hat(k) and hat(i)+2hat(j)-hat(k)` act at a point P, with position vector `4hat(i)-3hat(j)-hat(k)`. Find the moment of the resultant of these force about the point Q whose position vector is `6hat(i)+hat(j)-3hat(k)`.

Text Solution

AI Generated Solution

The correct Answer is:
To find the moment of the resultant of the forces about point Q, we will follow these steps: ### Step 1: Identify the Forces and Position Vectors The forces acting at point P are: - \( \mathbf{F_1} = 2\hat{i} + \hat{j} \) - \( \mathbf{F_2} = 2\hat{i} - 3\hat{j} + 6\hat{k} \) - \( \mathbf{F_3} = \hat{i} + 2\hat{j} - \hat{k} \) The position vector of point P is: - \( \mathbf{P} = 4\hat{i} - 3\hat{j} - \hat{k} \) The position vector of point Q is: - \( \mathbf{Q} = 6\hat{i} + \hat{j} - 3\hat{k} \) ### Step 2: Calculate the Resultant Force To find the resultant force \( \mathbf{F} \), we sum the three forces: \[ \mathbf{F} = \mathbf{F_1} + \mathbf{F_2} + \mathbf{F_3} \] Calculating each component: - \( \hat{i} \) component: \( 2 + 2 + 1 = 5 \) - \( \hat{j} \) component: \( 1 - 3 + 2 = 0 \) - \( \hat{k} \) component: \( 0 + 6 - 1 = 5 \) Thus, the resultant force is: \[ \mathbf{F} = 5\hat{i} + 0\hat{j} + 5\hat{k} = 5\hat{i} + 5\hat{k} \] ### Step 3: Calculate the Position Vector from Q to P The vector \( \mathbf{r} \) from point Q to point P is given by: \[ \mathbf{r} = \mathbf{P} - \mathbf{Q} \] Calculating \( \mathbf{r} \): \[ \mathbf{r} = (4\hat{i} - 3\hat{j} - \hat{k}) - (6\hat{i} + \hat{j} - 3\hat{k}) \] \[ = (4 - 6)\hat{i} + (-3 - 1)\hat{j} + (-1 + 3)\hat{k} \] \[ = -2\hat{i} - 4\hat{j} + 2\hat{k} \] ### Step 4: Calculate the Moment of the Force The moment \( \mathbf{M} \) of the force about point Q is given by the cross product: \[ \mathbf{M} = \mathbf{r} \times \mathbf{F} \] Substituting \( \mathbf{r} \) and \( \mathbf{F} \): \[ \mathbf{M} = (-2\hat{i} - 4\hat{j} + 2\hat{k}) \times (5\hat{i} + 5\hat{k}) \] Using the determinant method: \[ \mathbf{M} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ -2 & -4 & 2 \\ 5 & 0 & 5 \end{vmatrix} \] Calculating the determinant: \[ = \hat{i} \begin{vmatrix} -4 & 2 \\ 0 & 5 \end{vmatrix} - \hat{j} \begin{vmatrix} -2 & 2 \\ 5 & 5 \end{vmatrix} + \hat{k} \begin{vmatrix} -2 & -4 \\ 5 & 0 \end{vmatrix} \] Calculating each of the 2x2 determinants: 1. \( \begin{vmatrix} -4 & 2 \\ 0 & 5 \end{vmatrix} = (-4)(5) - (2)(0) = -20 \) 2. \( \begin{vmatrix} -2 & 2 \\ 5 & 5 \end{vmatrix} = (-2)(5) - (2)(5) = -10 - 10 = -20 \) 3. \( \begin{vmatrix} -2 & -4 \\ 5 & 0 \end{vmatrix} = (-2)(0) - (-4)(5) = 0 + 20 = 20 \) Putting it all together: \[ \mathbf{M} = -20\hat{i} + 20\hat{j} + 20\hat{k} \] ### Final Answer The moment of the resultant force about point Q is: \[ \mathbf{M} = -20\hat{i} + 20\hat{j} + 20\hat{k} \]
Promotional Banner

Topper's Solved these Questions

  • PRODUCT OF VECTORS

    ARIHANT MATHS|Exercise Exercise For Session 3|10 Videos
  • PRODUCT OF VECTORS

    ARIHANT MATHS|Exercise Exercise For Session 4|10 Videos
  • PRODUCT OF VECTORS

    ARIHANT MATHS|Exercise Exercise For Session 1|13 Videos
  • PROBABILITY

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|55 Videos
  • PROPERTIES AND SOLUTION OF TRIANGLES

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|21 Videos

Similar Questions

Explore conceptually related problems

A force F=2hat(i)+hat(j)-hat(k) acts at point A whose position vector is 2hat(i)-hat(j) . Find the moment of force F about the origin.

A force F=2hat(i)+hat(j)-hat(k) acts at point A whose position vector is 2hat(i)-hat(j) . Find the moment of force F about the origin.

If [[hat(i)+4hat(j)+6hat(k), 2hat(i)+ahat(j)+3hat(k), hat(i)+2hat(j)-3hat(k)]]=0 then a=

Vector vec(A)=hat(i)+hat(j)-2hat(k) and vec(B)=3hat(i)+3hat(j)-6hat(k) are :

A force (hat(i)-2hat(j)+3hat(k)) acts on a particle of position vector (3hat(i)+2hat(j)+hat(k)) . Calculate the torque acting on the particle.

The force 7 hat i+ 3 hat j - 5 hat k acts on a particle whose position vector is hat i- hat j + hat k . What is the torque of a given force about the origin ?

Show that the vectors hat(i)-hat(j)-6hat(k),hat(i)-3hat(j)+4hat(k)and2hat(i)-5hat(j)+3hat(k) are coplanar.

ARIHANT MATHS-PRODUCT OF VECTORS-Exercise For Session 2
  1. Find | vec axx vec b| , if vec a= hat i-7 hat j+7 hat ka n d vec b=3 ...

    Text Solution

    |

  2. Find the values of gamma and mu for which (2hati+6hatj+27hatk)xx(hati+...

    Text Solution

    |

  3. If a=2hat(i)+3hat(j)-hat(k), b=-hat(i)+2hat(j)-4hat(k), c=hat(i)+hat(j...

    Text Solution

    |

  4. Prove that ( vec adot hat i)( vec axx hat i)+( vec adotj)( vec axx hat...

    Text Solution

    |

  5. If vecaxxvecb=veccxxvecd and vecaxxvecc=vecbxxvecd then show that veca...

    Text Solution

    |

  6. If ( vec axx vec b)^2+( vec adot vec b)^2=144a n d| vec a|=4, then fin...

    Text Solution

    |

  7. If |a|=2,|b|=7 and vec ax vec b=3 hat i+2 hat j+6 hat k , find the...

    Text Solution

    |

  8. Let the vectors vec aa n d vec b be such that | vec a|=3| vec b|=(sqr...

    Text Solution

    |

  9. If |veca|=sqrt(26), |vecb|=7 and |vecaxxvecb|=35, find veca.vecb

    Text Solution

    |

  10. Find a unit vector perpendicular to the plane of two vectors a=hat(i)-...

    Text Solution

    |

  11. Find a vector of magnitude 15, which is perpendicular to both the vect...

    Text Solution

    |

  12. Let -> a= hat i+4 hat j+2 hat k , -> b=3 hat i-2 hat j+7 hat k and...

    Text Solution

    |

  13. Let A,B and C be the unit vectors . Suppose that A.B=A.C =0 and the a...

    Text Solution

    |

  14. Find the area of the triangle whose adjacent sides are determined by t...

    Text Solution

    |

  15. Find the area of parallelogram whose adjacent sides are represented by...

    Text Solution

    |

  16. What is the area of the parallelogram having diagonals 3hat(i) + hat(j...

    Text Solution

    |

  17. A force F=2hat(i)+hat(j)-hat(k) acts at point A whose position vector...

    Text Solution

    |

  18. Find the moment of vec F about point (2, -1, 3), where force vec ...

    Text Solution

    |

  19. Forces 2hat(i)+hat(j), 2hat(i)-3hat(j)+6hat(k) and hat(i)+2hat(j)-hat(...

    Text Solution

    |