Home
Class 12
MATHS
Consider the three vectors p, q, and r s...

Consider the three vectors p, q, and r such that `vecp=veci+vecj+veck` and `vecq=veci-vecj+veck; pxxr=q+cp` and `p.r=2`

A

`c(hat(i)-2hat(j)+hat(k))`

B

a unit vector

C

independent, as [p q r]

D

`-(hat(i)-2hat(j)+hat(k))/(2)`

Text Solution

Verified by Experts

The correct Answer is:
D
Promotional Banner

Topper's Solved these Questions

  • PRODUCT OF VECTORS

    ARIHANT MATHS|Exercise Exercise (Single Integer Answer Type Questions)|16 Videos
  • PRODUCT OF VECTORS

    ARIHANT MATHS|Exercise Exercise (Subjective Type Questions)|18 Videos
  • PRODUCT OF VECTORS

    ARIHANT MATHS|Exercise Exercise (Statement I And Ii Type Questions)|12 Videos
  • PROBABILITY

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|55 Videos
  • PROPERTIES AND SOLUTION OF TRIANGLES

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|21 Videos

Similar Questions

Explore conceptually related problems

Consider the three vectors p,q, and r such that vec p=vec i+vec j+vec k and vec q=vec i-vec j+vec k;p xx r=q+cp and p.r=2

Consider the three vectors p, q, r such that p=hat(i)+hat(j)+hat(k) and q=hat(i)-hat(j)+hat(k) , ptimesr=q+cp and p*r=2 Q.The value of [p q r] is

Find the dot and cross product of the vectors veca=2veci-3vecj+veck and vecb= -veci+3vecj+veck

Find the angle between veca=3veci+3vecj-3veck and vecb=2veci+vecj+3veck .

If vecA=2veci+3vecj+4veck and vecB=4veci+3vecj+2veck, find vecAxxvecB .

Write the unit vector in the direction of vecA=5veci+vecj-2veck .

Let veca=2veci+3vecj+4veck and vecb=3veci+4vecj+5veck . Find the angle between them.

Examine whether the vectors veca=2veci+3vecj+2veck, vecb=veci-vecj+2veck and vecc=3veci+2vecj-4veck form a left handed or a righat handed system.

Find the vector equation of the through the points 2veci+vecj-3veck and parallel to vector veci+2vecj+veck

ARIHANT MATHS-PRODUCT OF VECTORS-Exercise (Passage Based Questions)
  1. Consider three vectors p=hat(i)+hat(j)+hat(k), q=2hat(i)+4hat(j)-hat(k...

    Text Solution

    |

  2. Consider three vectors p=hat(i)+hat(j)+hat(k), q=2hat(i)+4hat(j)-hat(k...

    Text Solution

    |

  3. Consider the three vectors p, q, r such that p=hat(i)+hat(j)+hat(k) an...

    Text Solution

    |

  4. Consider the three vectors p, q, and r such that vecp=veci+vecj+veck a...

    Text Solution

    |

  5. Consider the three vectors p, q, r such that p=hat(i)+hat(j)+hat(k) an...

    Text Solution

    |

  6. Let P, Q are two points on the curve y = log(1/2) (x-0.5)+log2 sqrt(4x...

    Text Solution

    |

  7. Let P and Q are two points on the curve y=log((1)/(2))(x-0.5)+log2sqrt...

    Text Solution

    |

  8. Let P, Q are two points on the curve y = log(1/2) (x-0.5)+log2 sqrt(4x...

    Text Solution

    |

  9. If a, b, c are three given non-coplanar vectors and any arbitratry vec...

    Text Solution

    |

  10. If a, b, c are three given non-coplanar vectors and any arbitratry vec...

    Text Solution

    |

  11. If a, b, c are three given non-coplanar vectors and any arbitratry vec...

    Text Solution

    |

  12. If a, b, c are three given non-coplanar vectors and any arbitratry vec...

    Text Solution

    |

  13. Let g(x)=int0^x(3t^(2)+2t+9)dt and f(x) be a decreasing function fora...

    Text Solution

    |

  14. Let g(x)=int0^x(3t^(2)+2t+9)dt and f(x) be a decreasing function fora...

    Text Solution

    |

  15. Let x, y, z be the vector, such that |x|=|y|=|z|=sqrt(2) and x, y, z m...

    Text Solution

    |

  16. Let x,y,z be the vector, such that |x|=|y|=|z| =sqrt(2) and x,y,z make...

    Text Solution

    |

  17. Let x, y, z be the vector, such that |x|=|y|=|z|=sqrt(2) and x, y, z m...

    Text Solution

    |

  18. a, b, c are non-zero unit vectors inclined pairwise with the same angl...

    Text Solution

    |

  19. a, b, c are non-zero unit vectors inclined pairwise with the same angl...

    Text Solution

    |

  20. a, b, c are non-zero unit vectors inclined pairwise with the same angl...

    Text Solution

    |