Home
Class 12
MATHS
If a, b and c are unit vectors satisfyin...

If a, b and c are unit vectors satisfying `|a-b|^(2)+|b-c|^(2)+|c-a|^(2)=9`, then `|2a+5b+5x|` is

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \( |2a + 5b + 5c| \) given that \( |a - b|^2 + |b - c|^2 + |c - a|^2 = 9 \) and that \( a, b, c \) are unit vectors. ### Step-by-Step Solution: 1. **Understanding the given equation**: We start with the equation: \[ |a - b|^2 + |b - c|^2 + |c - a|^2 = 9 \] Since \( a, b, c \) are unit vectors, we know that \( |a|^2 = |b|^2 = |c|^2 = 1 \). 2. **Expanding the squares**: We can expand each term: \[ |a - b|^2 = |a|^2 + |b|^2 - 2a \cdot b = 1 + 1 - 2a \cdot b = 2 - 2a \cdot b \] \[ |b - c|^2 = |b|^2 + |c|^2 - 2b \cdot c = 1 + 1 - 2b \cdot c = 2 - 2b \cdot c \] \[ |c - a|^2 = |c|^2 + |a|^2 - 2c \cdot a = 1 + 1 - 2c \cdot a = 2 - 2c \cdot a \] 3. **Substituting back into the equation**: Now substituting these back into the original equation: \[ (2 - 2a \cdot b) + (2 - 2b \cdot c) + (2 - 2c \cdot a) = 9 \] Simplifying this gives: \[ 6 - 2(a \cdot b + b \cdot c + c \cdot a) = 9 \] Rearranging gives: \[ -2(a \cdot b + b \cdot c + c \cdot a) = 3 \] Thus: \[ a \cdot b + b \cdot c + c \cdot a = -\frac{3}{2} \] 4. **Finding \( |2a + 5b + 5c| \)**: We need to find \( |2a + 5b + 5c| \). We can calculate this using the formula for the magnitude of a vector: \[ |2a + 5b + 5c|^2 = |2a|^2 + |5b|^2 + |5c|^2 + 2(2a \cdot 5b + 2a \cdot 5c + 5b \cdot 5c) \] This simplifies to: \[ |2a + 5b + 5c|^2 = 4|a|^2 + 25|b|^2 + 25|c|^2 + 20(a \cdot b + a \cdot c + b \cdot c) \] Since \( |a|^2 = |b|^2 = |c|^2 = 1 \): \[ |2a + 5b + 5c|^2 = 4 + 25 + 25 + 20(-\frac{3}{2}) \] \[ = 54 - 30 = 24 \] 5. **Taking the square root**: Finally, we take the square root to find the magnitude: \[ |2a + 5b + 5c| = \sqrt{24} = 2\sqrt{6} \] ### Final Answer: Thus, the value of \( |2a + 5b + 5c| \) is \( 2\sqrt{6} \).
Promotional Banner

Topper's Solved these Questions

  • PRODUCT OF VECTORS

    ARIHANT MATHS|Exercise Exercise (Subjective Type Questions)|18 Videos
  • PROBABILITY

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|55 Videos
  • PROPERTIES AND SOLUTION OF TRIANGLES

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|21 Videos

Similar Questions

Explore conceptually related problems

If vec a,vec b and vec c are unit vectors satisfying |vec a-vec b|^(2)+|vec b-vec c|^(2)+|vec c-vec a|^(2)=9 then |2vec a+5vec b+5vec c| is.

If a,b and c are unit vectors, then the maximum value of |a-b|^(2)+|b-c|^(2)+|c-a|^(2) is?

bar(a),bar(b) and bar(c) are unit vectors satisfying |bar(a)-bar(b)|^(2)+|bar(b)-bar(c)|^(2)+|bar(c)-bar(a)|^(2)=9 then |2bar(a)+5bar(b)+5bar(c)|=

If bar(a),bar(b) and bar(c) are unit vectors satisfying |bar(a)-bar(b)|^(2)+|bar(b)-bar(c)|^(2)+|bar(c)-bar(a)|^(2)=9 , then |2bar(a)+5bar(b)+5bar(c)| =

if a,b,c are natural number satisfying a^(2)+b^(2)=c^(2), then

If vec a, vec b and vec c are unit vectors satisfying | vec a-vec b | ^ (2) + | vec b-vec c | ^ (2) + | vec c-vec a | ^ (2) = 9 then | 2vec a + 7vec b + 7vec c | =

ARIHANT MATHS-PRODUCT OF VECTORS-Exercise (Questions Asked In Previous 13 Years Exam)
  1. Let a, b and c be three unit vectors such that atimes(btimesc)=(sqrt(3...

    Text Solution

    |

  2. Let vec(a) , vec(b) and vec(c) be three non-zero vectors such that no ...

    Text Solution

    |

  3. If a, b and c are unit vectors satisfying |a-b|^(2)+|b-c|^(2)+|c-a|^(2...

    Text Solution

    |

  4. The vector(s) which is/are coplanar with vectors hat(i)+hat(j)+2hat(k)...

    Text Solution

    |

  5. Let vec a =hat i+hat j+hat k,vec b=hat i -hat j+hat k and vec c =hat ...

    Text Solution

    |

  6. Two adjacent sides of a parallelogram ABCD are given by vec(AB)=2hati+...

    Text Solution

    |

  7. Let P, Q, R and S be the points on the plane with position vectors -2h...

    Text Solution

    |

  8. If a and b are vectors in space given by a=(hat(i)-2hat(j))/(sqrt(5)) ...

    Text Solution

    |

  9. If veca,vecb,vecc and vecd are unit vectors such that (vecaxxvecb)*(...

    Text Solution

    |

  10. The edges of a parallelopiped are of unit length and are parallel to ...

    Text Solution

    |

  11. Lelt two non collinear unit vectors hata and hatb form and acute angle...

    Text Solution

    |

  12. Let the vectors PQ, QR, RS, ST, TU and UP represent the sides of a reg...

    Text Solution

    |

  13. The number of distinct real values of lambda, for which the vectors -l...

    Text Solution

    |

  14. Let veca,vecb,vecc be unit vectors such that veca+vecb+vecc=vec0. Whic...

    Text Solution

    |

  15. Let A be vector parallel to line of intersection of planes P1 and P2. ...

    Text Solution

    |

  16. Let a=hat(i)+2hat(j)+hat(k), b=hat(i)-hat(j)+hat(k), c=hat(i)+hat(j)-h...

    Text Solution

    |

  17. If vec a , vec b and vec c are three non-zero, non coplanar vecto...

    Text Solution

    |

  18. The unit vector which is orthogonal to the vector 3hati+2hatj+6hatk an...

    Text Solution

    |

  19. The value of a so that the volume of parallelepiped formed by hat ...

    Text Solution

    |

  20. If vec a=( hat i+ hat j+ hat k), vec adot vec b=1a n d vec axx vec b=...

    Text Solution

    |