Home
Class 12
MATHS
The vector(s) which is/are coplanar with...

The vector(s) which is/are coplanar with vectors `hat(i)+hat(j)+2hat(k) and hat(i)+2hat(j)+hat(k)` are perpendicular to the vector `hat(i)+hat(j)+hat(k)` is are

A

`hat(j)-hat(k)`

B

`-hat(i)+hat(j)`

C

`hat(i)-hat(j)`

D

`-hat(j)+hat(k)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the vectors that are coplanar with the vectors \(\hat{i} + \hat{j} + 2\hat{k}\) and \(\hat{i} + 2\hat{j} + \hat{k}\) and are also perpendicular to the vector \(\hat{i} + \hat{j} + \hat{k}\). ### Step-by-Step Solution: 1. **Define the Vectors:** Let: \[ \mathbf{A} = \hat{i} + \hat{j} + 2\hat{k} \] \[ \mathbf{B} = \hat{i} + 2\hat{j} + \hat{k} \] We need to find a vector \(\mathbf{R}\) that is coplanar with \(\mathbf{A}\) and \(\mathbf{B}\) and is perpendicular to \(\mathbf{C} = \hat{i} + \hat{j} + \hat{k}\). 2. **Express the Coplanar Vector:** A vector \(\mathbf{R}\) that is coplanar with \(\mathbf{A}\) and \(\mathbf{B}\) can be expressed as a linear combination of \(\mathbf{A}\) and \(\mathbf{B}\): \[ \mathbf{R} = \lambda \mathbf{A} + \mu \mathbf{B} \] Substituting \(\mathbf{A}\) and \(\mathbf{B}\): \[ \mathbf{R} = \lambda (\hat{i} + \hat{j} + 2\hat{k}) + \mu (\hat{i} + 2\hat{j} + \hat{k}) \] 3. **Combine the Components:** Combining the components of \(\mathbf{R}\): \[ \mathbf{R} = (\lambda + \mu)\hat{i} + (\lambda + 2\mu)\hat{j} + (2\lambda + \mu)\hat{k} \] 4. **Condition for Perpendicularity:** For \(\mathbf{R}\) to be perpendicular to \(\mathbf{C}\), the dot product must equal zero: \[ \mathbf{R} \cdot \mathbf{C} = 0 \] Thus, we have: \[ (\lambda + \mu) + (\lambda + 2\mu) + (2\lambda + \mu) = 0 \] Simplifying this: \[ 4\lambda + 4\mu = 0 \] Therefore: \[ \lambda + \mu = 0 \quad \Rightarrow \quad \mu = -\lambda \] 5. **Substitute Back:** Substitute \(\mu = -\lambda\) into the expression for \(\mathbf{R}\): \[ \mathbf{R} = \lambda (\hat{i} + \hat{j} + 2\hat{k}) - \lambda (\hat{i} + 2\hat{j} + \hat{k}) \] Simplifying: \[ \mathbf{R} = \lambda \left( (\hat{i} - \hat{i}) + (\hat{j} - 2\hat{j}) + (2\hat{k} - \hat{k}) \right) \] \[ \mathbf{R} = \lambda (0\hat{i} - \hat{j} + \hat{k}) = \lambda (-\hat{j} + \hat{k}) \] 6. **Identify the Vectors:** The vector \(\mathbf{R}\) can be expressed as: \[ \mathbf{R} = \lambda (-\hat{j} + \hat{k}) \] For \(\lambda = 1\), we have \(-\hat{j} + \hat{k}\) and for \(\lambda = -1\), we have \(\hat{j} - \hat{k}\). ### Final Answer: The vectors that are coplanar with \(\hat{i} + \hat{j} + 2\hat{k}\) and \(\hat{i} + 2\hat{j} + \hat{k}\) and perpendicular to \(\hat{i} + \hat{j} + \hat{k}\) are: - \(-\hat{j} + \hat{k}\) (Option 4) - \(\hat{j} - \hat{k}\) (Option 1)
Promotional Banner

Topper's Solved these Questions

  • PRODUCT OF VECTORS

    ARIHANT MATHS|Exercise Exercise (Subjective Type Questions)|18 Videos
  • PROBABILITY

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|55 Videos
  • PROPERTIES AND SOLUTION OF TRIANGLES

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|21 Videos

Similar Questions

Explore conceptually related problems

The vector(s) which is/are coplanar with vectors hat i+hat j+2hat kandhat i+2hat j+hat k, and perpendicular to vector hat i+hat j+hat k, is/are a.hat j-hat k b.-hat i+hat j c.hat i-hat j d.-hat j+hat k

A unit vector in the plane of hat(i)+2hat(j)+hat(k) and hat(i)+hat(j)+2hat(k) and perpendicular to 2hat(i)+hat(j)+hat(k) , is

A vector perpendicular to hat(i)+hat(j)+hat(k) is

Show that the vectors 2hat(i)-hat(j)+hat(k) and hat(i)-3hat(j)-5hat(k) are at right angles.

Find a unit vector perpendicular to the vectors hat(j) + 2 hat(k) & hat(i) + hat(j)

If vectors hat(i) - 3hat(j) + 5hat(k) and hat(i) - 3hat(j) - a hat(k) are equal vectors, then the value of a is :

If hat(i), hat(j), hat(k) are the unit vectors and mutually perpendicular, then [[hat(i), hat(j), hat(k)]] =

A vector perpendicular to (hat(i)+hat(j)+hat(k)) and (hat(i)-hat(j)-hat(k)) is :-

Find the vector projection of the vector : 2hat(i)-hat(j)+hat(k) on hat(i)-2hat(j)+hat(k) .

A vector equally inclined to the vectors hat(i)-hat(j)+hat(k) and hat(i)+hat(j)-hat(k) then the plane containing them is

ARIHANT MATHS-PRODUCT OF VECTORS-Exercise (Questions Asked In Previous 13 Years Exam)
  1. Let vec(a) , vec(b) and vec(c) be three non-zero vectors such that no ...

    Text Solution

    |

  2. If a, b and c are unit vectors satisfying |a-b|^(2)+|b-c|^(2)+|c-a|^(2...

    Text Solution

    |

  3. The vector(s) which is/are coplanar with vectors hat(i)+hat(j)+2hat(k)...

    Text Solution

    |

  4. Let vec a =hat i+hat j+hat k,vec b=hat i -hat j+hat k and vec c =hat ...

    Text Solution

    |

  5. Two adjacent sides of a parallelogram ABCD are given by vec(AB)=2hati+...

    Text Solution

    |

  6. Let P, Q, R and S be the points on the plane with position vectors -2h...

    Text Solution

    |

  7. If a and b are vectors in space given by a=(hat(i)-2hat(j))/(sqrt(5)) ...

    Text Solution

    |

  8. If veca,vecb,vecc and vecd are unit vectors such that (vecaxxvecb)*(...

    Text Solution

    |

  9. The edges of a parallelopiped are of unit length and are parallel to ...

    Text Solution

    |

  10. Lelt two non collinear unit vectors hata and hatb form and acute angle...

    Text Solution

    |

  11. Let the vectors PQ, QR, RS, ST, TU and UP represent the sides of a reg...

    Text Solution

    |

  12. The number of distinct real values of lambda, for which the vectors -l...

    Text Solution

    |

  13. Let veca,vecb,vecc be unit vectors such that veca+vecb+vecc=vec0. Whic...

    Text Solution

    |

  14. Let A be vector parallel to line of intersection of planes P1 and P2. ...

    Text Solution

    |

  15. Let a=hat(i)+2hat(j)+hat(k), b=hat(i)-hat(j)+hat(k), c=hat(i)+hat(j)-h...

    Text Solution

    |

  16. If vec a , vec b and vec c are three non-zero, non coplanar vecto...

    Text Solution

    |

  17. The unit vector which is orthogonal to the vector 3hati+2hatj+6hatk an...

    Text Solution

    |

  18. The value of a so that the volume of parallelepiped formed by hat ...

    Text Solution

    |

  19. If vec a=( hat i+ hat j+ hat k), vec adot vec b=1a n d vec axx vec b=...

    Text Solution

    |

  20. Let vec V=2 hat i+ hat j- hat ka n d vec W= hat i+3 hat kdot If vec ...

    Text Solution

    |