Home
Class 12
MATHS
The number of distinct real values of la...

The number of distinct real values of `lambda`, for which the vectors `-lambda^(2)hat(i)+hat(j)+hat(k), hat(i)-lambda^(2)hat(j)+hat(k) and hat(i)+hat(j)-lambda^(2)hat(k)` are coplanar, is

A

`0`

B

`1`

C

`pmsqrt(2)`

D

`3`

Text Solution

AI Generated Solution

The correct Answer is:
To determine the number of distinct real values of \(\lambda\) for which the vectors \(-\lambda^2 \hat{i} + \hat{j} + \hat{k}\), \(\hat{i} - \lambda^2 \hat{j} + \hat{k}\), and \(\hat{i} + \hat{j} - \lambda^2 \hat{k}\) are coplanar, we can follow these steps: ### Step 1: Define the Vectors Let: \[ \mathbf{a} = -\lambda^2 \hat{i} + \hat{j} + \hat{k} \] \[ \mathbf{b} = \hat{i} - \lambda^2 \hat{j} + \hat{k} \] \[ \mathbf{c} = \hat{i} + \hat{j} - \lambda^2 \hat{k} \] ### Step 2: Set Up the Determinant The vectors are coplanar if the determinant of the matrix formed by these vectors is zero: \[ \begin{vmatrix} -\lambda^2 & 1 & 1 \\ 1 & -\lambda^2 & 1 \\ 1 & 1 & -\lambda^2 \end{vmatrix} = 0 \] ### Step 3: Calculate the Determinant We can calculate the determinant using cofactor expansion or row operations. Let's perform row operations to simplify the determinant: 1. Add the first row to the second and third rows: \[ \begin{vmatrix} -\lambda^2 & 1 & 1 \\ 0 & -\lambda^2 + 1 & 2 \\ 0 & 2 & -\lambda^2 + 1 \end{vmatrix} \] ### Step 4: Further Simplify the Determinant Now, we can factor out \(-\lambda^2\): \[ -\lambda^2 \begin{vmatrix} 1 & 1 & 1 \\ 0 & -\lambda^2 + 1 & 2 \\ 0 & 2 & -\lambda^2 + 1 \end{vmatrix} \] ### Step 5: Calculate the Remaining 2x2 Determinant Now, we calculate the determinant of the remaining 2x2 matrix: \[ \begin{vmatrix} -\lambda^2 + 1 & 2 \\ 2 & -\lambda^2 + 1 \end{vmatrix} = (-\lambda^2 + 1)(-\lambda^2 + 1) - (2)(2) = (\lambda^2 - 1)^2 - 4 \] This simplifies to: \[ (\lambda^2 - 1)^2 - 4 = 0 \] ### Step 6: Solve the Equation Now we have: \[ (\lambda^2 - 1)^2 - 4 = 0 \] This can be factored as: \[ (\lambda^2 - 1 - 2)(\lambda^2 - 1 + 2) = 0 \] which gives: \[ (\lambda^2 - 3)(\lambda^2 + 1) = 0 \] ### Step 7: Find the Values of \(\lambda\) From \((\lambda^2 - 3) = 0\), we get: \[ \lambda^2 = 3 \implies \lambda = \pm \sqrt{3} \] From \((\lambda^2 + 1) = 0\), we get: \[ \lambda^2 = -1 \implies \text{no real solutions} \] ### Conclusion Thus, the distinct real values of \(\lambda\) are \(\sqrt{3}\) and \(-\sqrt{3}\). Therefore, the number of distinct real values of \(\lambda\) is: \[ \boxed{2} \]
Promotional Banner

Topper's Solved these Questions

  • PRODUCT OF VECTORS

    ARIHANT MATHS|Exercise Exercise (Subjective Type Questions)|18 Videos
  • PROBABILITY

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|55 Videos
  • PROPERTIES AND SOLUTION OF TRIANGLES

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|21 Videos

Similar Questions

Explore conceptually related problems

The number of distinct real values of lambda, for which the vectors -lambda^(2)hat i+hat j+k,hat i-lambda^(2)hat j+hat k and hat i+hat j-lambda^(2)hat k are coplanar is a.zero b.one c.two d.three

The vectors lamdahat(i)+hat(j)+2hat(k),hat(i)+lamdahat(j)-hat(k) and 2hat(i)-hat(j)+lamda hat(k) are coplanar, if

What is the value of lambda for which the vectors hat(i)-hat(j)+hat(k), 2 hat(i)+hat(j)-hat(k) and lambda hat(i)-hat(j)+lambda hat(k) are co-planar?

What is the value of lamda for which the vectors hat(i) - hat(j) + hat(k), 2hat(i) + hat(j)- hat(k) and lamda hat(i) - hat(j)+ lamda (k) are coplanar

If vector hat(i)+hat(j)+hat(k), hat(i)-hat(j)+hat(k) and 2hat(i)+3hat(j)+lambda hat(k) are coplanar, then lambda is equal to

What is the value of lambda for which the vectors 3hat(i)+4hat(j)-hat(k) and -2hat(i)+lambda hat(j)+10hat(k) are perpendicular?

The value of 'lambda' for which the two vectors : 2hat(i)-hat(j)+2hat(k) and 3hat(i)+lambda hat(j)+hat(k) are perpendicular is :

The sum of the distinct real values of mu for which the vectors, muhat(i)+hat(j)+hat(k),hat(i)+muhat(j)+hat(k),hat(i)+hat(j)+muhat(k) are co-planar is :

ARIHANT MATHS-PRODUCT OF VECTORS-Exercise (Questions Asked In Previous 13 Years Exam)
  1. Lelt two non collinear unit vectors hata and hatb form and acute angle...

    Text Solution

    |

  2. Let the vectors PQ, QR, RS, ST, TU and UP represent the sides of a reg...

    Text Solution

    |

  3. The number of distinct real values of lambda, for which the vectors -l...

    Text Solution

    |

  4. Let veca,vecb,vecc be unit vectors such that veca+vecb+vecc=vec0. Whic...

    Text Solution

    |

  5. Let A be vector parallel to line of intersection of planes P1 and P2. ...

    Text Solution

    |

  6. Let a=hat(i)+2hat(j)+hat(k), b=hat(i)-hat(j)+hat(k), c=hat(i)+hat(j)-h...

    Text Solution

    |

  7. If vec a , vec b and vec c are three non-zero, non coplanar vecto...

    Text Solution

    |

  8. The unit vector which is orthogonal to the vector 3hati+2hatj+6hatk an...

    Text Solution

    |

  9. The value of a so that the volume of parallelepiped formed by hat ...

    Text Solution

    |

  10. If vec a=( hat i+ hat j+ hat k), vec adot vec b=1a n d vec axx vec b=...

    Text Solution

    |

  11. Let vec V=2 hat i+ hat j- hat ka n d vec W= hat i+3 hat kdot If vec ...

    Text Solution

    |

  12. If veca and vecb are two unit vectors such that veca+2vecb and 5veca-4...

    Text Solution

    |

  13. Let a= 2hat(i) -2hat(k) , b=hat(i) +hat(j) and c be a vectors suc...

    Text Solution

    |

  14. If [axxb bxxc c xxa]=lambda[abc]^(2), then lambda is euqual to

    Text Solution

    |

  15. Let hata and hatb be two unit vectors. If the vectors vecc=hata+2hatb ...

    Text Solution

    |

  16. Let ABCD be a parallelogram such that vec AB = vec q,vec AD = vec p a...

    Text Solution

    |

  17. 1/sqrt(10)(3hatj + hatk) and vecb =(2hati +3hatj-6hatk), then the valu...

    Text Solution

    |

  18. The vectors a and b are not perpendicular and c and d are two vectors ...

    Text Solution

    |

  19. If the vectors ahat(i)+hat(j)+hat(k), hat(i)+bhat(j)+hat(k), hat(i)+ha...

    Text Solution

    |

  20. Let veca =hatj-hatk and vecc =hati-hatj-hatk. Then the vector b satisf...

    Text Solution

    |