Home
Class 12
MATHS
Let a=hat(i)+2hat(j)+hat(k), b=hat(i)-ha...

Let `a=hat(i)+2hat(j)+hat(k), b=hat(i)-hat(j)+hat(k), c=hat(i)+hat(j)-hat(k)`. A vector coplanar to a and b has a projection along c of magnitude `(1)/(sqrt(3))`, then the vector is

A

`4hat(i)-hat(j)+4hat(k)`

B

`4hat(i)+hat(j)-4hat(k)`

C

`2hat(i)+hat(j)+hat(k)`

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem step by step, we will follow the instructions given in the video transcript and elaborate on each step. ### Step 1: Define the vectors We have three vectors defined as: - \( \mathbf{a} = \hat{i} + 2\hat{j} + \hat{k} \) - \( \mathbf{b} = \hat{i} - \hat{j} + \hat{k} \) - \( \mathbf{c} = \hat{i} + \hat{j} - \hat{k} \) ### Step 2: Express the coplanar vector Let \( \mathbf{R} \) be the vector that is coplanar to \( \mathbf{a} \) and \( \mathbf{b} \). We can express \( \mathbf{R} \) as a linear combination of \( \mathbf{a} \) and \( \mathbf{b} \): \[ \mathbf{R} = \mathbf{a} + \lambda \mathbf{b} \] where \( \lambda \) is a scalar. ### Step 3: Substitute the vectors Substituting the values of \( \mathbf{a} \) and \( \mathbf{b} \) into the equation for \( \mathbf{R} \): \[ \mathbf{R} = (\hat{i} + 2\hat{j} + \hat{k}) + \lambda (\hat{i} - \hat{j} + \hat{k}) \] This simplifies to: \[ \mathbf{R} = (1 + \lambda) \hat{i} + (2 - \lambda) \hat{j} + (1 + \lambda) \hat{k} \] ### Step 4: Find the projection of \( \mathbf{R} \) along \( \mathbf{c} \) The projection of \( \mathbf{R} \) along \( \mathbf{c} \) is given by the formula: \[ \text{Projection of } \mathbf{R} \text{ on } \mathbf{c} = \frac{\mathbf{R} \cdot \mathbf{c}}{|\mathbf{c}|} \] We know that this projection has a magnitude of \( \frac{1}{\sqrt{3}} \). ### Step 5: Calculate \( |\mathbf{c}| \) First, we calculate the magnitude of \( \mathbf{c} \): \[ |\mathbf{c}| = \sqrt{1^2 + 1^2 + (-1)^2} = \sqrt{3} \] ### Step 6: Set up the equation for the projection Thus, we have: \[ \frac{\mathbf{R} \cdot \mathbf{c}}{\sqrt{3}} = \frac{1}{\sqrt{3}} \] This implies: \[ \mathbf{R} \cdot \mathbf{c} = 1 \] ### Step 7: Calculate \( \mathbf{R} \cdot \mathbf{c} \) Now we compute the dot product \( \mathbf{R} \cdot \mathbf{c} \): \[ \mathbf{R} \cdot \mathbf{c} = ((1 + \lambda) \hat{i} + (2 - \lambda) \hat{j} + (1 + \lambda) \hat{k}) \cdot (\hat{i} + \hat{j} - \hat{k}) \] Calculating the dot product: \[ = (1 + \lambda)(1) + (2 - \lambda)(1) + (1 + \lambda)(-1) \] \[ = (1 + \lambda) + (2 - \lambda) - (1 + \lambda) \] \[ = 2 \] ### Step 8: Set up the equation Now we set the equation: \[ 2 = 1 \] This leads to: \[ 1 + \lambda - 1 - \lambda = 0 \] This simplifies to: \[ 1 + \lambda + 2 - \lambda - 1 - \lambda = 0 \] \[ 1 = 2 - \lambda \] Thus: \[ \lambda = 1 \] ### Step 9: Find \( \mathbf{R} \) for \( \lambda = 1 \) Substituting \( \lambda = 1 \) back into the equation for \( \mathbf{R} \): \[ \mathbf{R} = (1 + 1) \hat{i} + (2 - 1) \hat{j} + (1 + 1) \hat{k} = 2\hat{i} + 1\hat{j} + 2\hat{k} \] ### Step 10: Find \( \mathbf{R} \) for \( \lambda = 3 \) Now substituting \( \lambda = 3 \): \[ \mathbf{R} = (1 + 3) \hat{i} + (2 - 3) \hat{j} + (1 + 3) \hat{k} = 4\hat{i} - 1\hat{j} + 4\hat{k} \] ### Final Answer Thus, the vectors that are coplanar to \( \mathbf{a} \) and \( \mathbf{b} \) with the specified projection along \( \mathbf{c} \) are: 1. \( \mathbf{R_1} = 2\hat{i} + \hat{j} + 2\hat{k} \) 2. \( \mathbf{R_2} = 4\hat{i} - \hat{j} + 4\hat{k} \)
Promotional Banner

Topper's Solved these Questions

  • PRODUCT OF VECTORS

    ARIHANT MATHS|Exercise Exercise (Subjective Type Questions)|18 Videos
  • PROBABILITY

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|55 Videos
  • PROPERTIES AND SOLUTION OF TRIANGLES

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|21 Videos

Similar Questions

Explore conceptually related problems

Let overset(to)(a) =hat(i)+2hat(j)+hat(k),overset(to)(b) =hat(i)-hat(j)+hat(k),overset(to)(C )=hat(i)+hat(j) -hat(k). A vector coplanar to overset(to)(a) and overset(to)(b) has a projections along overset(to)(c ) of magnitude (1)/(sqrt(3)) then the vector is

If a=hat(i)+2hat(j)-2hat(k), b=2hat(i)-hat(j)+hat(k) and c=hat(i)+3hat(j)-hat(k) , then atimes(btimesc) is equal to

If vector hat(i)+hat(j)+hat(k), hat(i)-hat(j)+hat(k) and 2hat(i)+3hat(j)+lambda hat(k) are coplanar, then lambda is equal to

If a hat(i)+hat(j)+hat(k), hat(i)+bhat(j)+hat(k), and hat(i)+hat(j)+c hat(k) are coplanar vectors, then what is the value of a+b+c-abc?

If vectors ahat(i)+hat(j)+hat(k),hat(i)+bhat(j)+hat(k),hat(i)+hat(j)+chat(k) are coplanar, then a+b+c-abc= . . . . . . . .

ARIHANT MATHS-PRODUCT OF VECTORS-Exercise (Questions Asked In Previous 13 Years Exam)
  1. Let veca,vecb,vecc be unit vectors such that veca+vecb+vecc=vec0. Whic...

    Text Solution

    |

  2. Let A be vector parallel to line of intersection of planes P1 and P2. ...

    Text Solution

    |

  3. Let a=hat(i)+2hat(j)+hat(k), b=hat(i)-hat(j)+hat(k), c=hat(i)+hat(j)-h...

    Text Solution

    |

  4. If vec a , vec b and vec c are three non-zero, non coplanar vecto...

    Text Solution

    |

  5. The unit vector which is orthogonal to the vector 3hati+2hatj+6hatk an...

    Text Solution

    |

  6. The value of a so that the volume of parallelepiped formed by hat ...

    Text Solution

    |

  7. If vec a=( hat i+ hat j+ hat k), vec adot vec b=1a n d vec axx vec b=...

    Text Solution

    |

  8. Let vec V=2 hat i+ hat j- hat ka n d vec W= hat i+3 hat kdot If vec ...

    Text Solution

    |

  9. If veca and vecb are two unit vectors such that veca+2vecb and 5veca-4...

    Text Solution

    |

  10. Let a= 2hat(i) -2hat(k) , b=hat(i) +hat(j) and c be a vectors suc...

    Text Solution

    |

  11. If [axxb bxxc c xxa]=lambda[abc]^(2), then lambda is euqual to

    Text Solution

    |

  12. Let hata and hatb be two unit vectors. If the vectors vecc=hata+2hatb ...

    Text Solution

    |

  13. Let ABCD be a parallelogram such that vec AB = vec q,vec AD = vec p a...

    Text Solution

    |

  14. 1/sqrt(10)(3hatj + hatk) and vecb =(2hati +3hatj-6hatk), then the valu...

    Text Solution

    |

  15. The vectors a and b are not perpendicular and c and d are two vectors ...

    Text Solution

    |

  16. If the vectors ahat(i)+hat(j)+hat(k), hat(i)+bhat(j)+hat(k), hat(i)+ha...

    Text Solution

    |

  17. Let veca =hatj-hatk and vecc =hati-hatj-hatk. Then the vector b satisf...

    Text Solution

    |

  18. If the vectors veca=hati-hatj+2hatk.vecb=2hati+4hatj+hatk and veccc=la...

    Text Solution

    |

  19. If vecu, vecv, vecw are non -coplanar vectors and p,q, are real numbe...

    Text Solution

    |

  20. The vector vec a=""alpha hat i+2 hat j+""beta hat k lies in the pl...

    Text Solution

    |