Home
Class 12
MATHS
Prove that the function: f(x)=cos^2x+cos...

Prove that the function: `f(x)=cos^2x+cos^2(pi/3+x)-cosx*cos(pi/3+x)` is constant function. Find the value of that constant

Promotional Banner

Similar Questions

Explore conceptually related problems

prove that f(x)=cos^(2)x+cos^(2)(pi/3+x)-cosx*cos(x+pi/3) is constant function. find the value of that constant

f(x)=cos^(2)x+cos^(2)(pi/3+x)-cosx*cos(x+pi/3) is

f(x)=cos^(2)x+cos^(2)(pi/3+x)-cosx*cos(x+pi/3) is

f(x)=cos^(2)x+cos^(2)(pi/3+x)-cosx*cos(x+pi/3) is

The value of cos^(2)x + cos^(2) (pi/3 + x) - cos x *cos(pi/3+ x) is

Prove that the function f(x)=cos x is strictly decreasing in (0,pi)

Prove that cos^2x+cos^2(x+pi/3)+cos^2(x-pi/3)=3/2 .

Prove that : cos^(2)x+cos^(2)(x+(pi)/(3))+cos^(2)(x-(pi)/(3))=(3)/(2)