Home
Class 8
MATHS
1.If lim(x rarr0)(f(x))/(x) exists and f...

1.If `lim_(x rarr0)(f(x))/(x) `exists and `f(0)=0` then f(x) is (a) continuous at x=0 (b) discontinuous at x=0 (e) continuous no where (d) None of these

Promotional Banner

Similar Questions

Explore conceptually related problems

lim_(x rarr0)(|x|)/(x)

lim_(x rarr0)[(x)/([x])]=

lim_(x rarr0^(+))(x)^(In x)

lim_(x rarr0)((e^(x)-x-1)/(x))

lim_(x rarr 0) (|x|)/x is :

lim_(x rarr0^(-))((e^((1)/(x)))/(x))

Given lim_(x rarr0)(f(x))/(x^(2))=2 then lim_(x rarr0)[f(x)]=

lim_ (x rarr0) (e ^ (x) -e ^ (- x)) / (x)

f(x)=e^x then lim_(x rarr 0) f(f(x))^(1/{f(x)} is

lim_(x rarr0^(+))(f(x^(2))-f(sqrt(x)))/(x)