Home
Class 11
MATHS
sqrt(4i) = 1.) +-sqrt(2)(1-i) 2....

`sqrt(4i)` = ` ` 1.) `+-sqrt(2)(1-i)` 2.)` +-(1+i) ` 3.)`+-(1-i) ` 4.)` +-sqrt(2)(1+i)`

Promotional Banner

Similar Questions

Explore conceptually related problems

sqrt(-i) = (1-i)/sqrt2

sqrt(i) = a) +-(1-i)/sqrt(2) b) +-(1+i)/sqrt(2) c) +-(1-i) d) +-(1+i)

(iii) (1+i)/(sqrt(2))=sqrt(i)

If z is a complex number having least absolute value and |z-2+2i|=1 ,then z= (2-1//sqrt(2))(1-i) b. (2-1//sqrt(2))(1+i) c. (2+1//sqrt(2))(1-i)"" d. (2+1//sqrt(2))(1+i)

If z is a complex number having least absolute value and |z-2+2i|=1 ,then z= (2-1//sqrt(2))(1-i) b. (2-1//sqrt(2))(1+i) c. (2+1//sqrt(2))(1-i)"" d. (2+1//sqrt(2))(1+i)

If z is a complex number having least absolute value and |z-2+2i|=1 ,then z= (2-1//sqrt(2))(1-i) b. (2-1//sqrt(2))(1+i) c. (2+1//sqrt(2))(1-i)"" d. (2+1//sqrt(2))(1+i)

Show that ((1)/( sqrt2) + (i)/( sqrt2 )) ^( 10) + ((1)/( sqrt2 ) - (i)/( sqrt2 )) ^( 10 ) = 0