Home
Class 14
MATHS
[" (i) If "cos^(-1)x+cos^(-1)y+cos^(-1)z...

[" (i) If "cos^(-1)x+cos^(-1)y+cos^(-1)z=pi" ,prove that: "],[x^(2)+y^(2)+z^(2)+2xyz=1],[" (ii) If "sin^(-1)x+sin^(-1)y+sin^(-1)z=pi" ,prove that "]

Promotional Banner

Similar Questions

Explore conceptually related problems

If cos^(-1) x +cos^(-1)y +cos^(-1)z =pi , then prove that x^(2)+y^(2)+z^(2)+2xyz=1 .

If cos^(-1)x+cos^(-1)y+cos^(-1)=pi, prove that x^(2)+y^(2)+z^(2)+2xyz=1

If (i) cos^(-1) x + cos^(-1) y + cos^(-1) z = pi , prove that : x^(2) +y^(2) +z^(2) + 2xyz = 1 (ii) If sin^(-1) x + sin^(-1) y + sin^(-1) z = pi/2 , prove that : x^(2) +y^(2) +z^(2) +2xyz = 1

If cos^(-1)x + cos^(-1)y + cos^(-1)z = pi , then x^(2) + y^(2) + z^(2) + 2xyz is :

If cos^(-1)x+cos^(-1)y+cos^(-1)z=pi , prove that x^2+y^2+z^2+2x y z=1.

If cos^(-1)x+cos^(-1)y+cos^(-1)z=pi , prove that x^2+y^2+z^2+2x y z=1.

cos^(-1)x+cos^(-1)y+cos^(-1)z=pi ,then prove that, x^2+y^2+z^2+xyz=1

If cos^(-1)x + cos^(-1)y - cos^(-1) z = 0 , then show that x^(2) + y^(2) + z^(2) - 2xyz = 1

If cos^-1x+cos^-1y+cos^-1z=pi , prove that x^2+y^2+z^2+2xyz=1 .

If sin^(-1)x+sin^(-1)y+sin^(-1)z=pi , prove that x^(2)-y^(2)+z^(2)-2xz sqrt(1-y^(2))=0