Home
Class 14
MATHS
The value of [1+ 1/(x+1)][1+1/(x+2)][...

The value of `[1+ 1/(x+1)][1+1/(x+2)][1+1/(x+3)][1+1/(x+4)]` is (a) `(x+5)/(x+1)` (b) `(x+1)/(x+5)` (c) `1+1/(x+5)` (d) `1/(x+5)`

Promotional Banner

Similar Questions

Explore conceptually related problems

[1+(1)/(x+1)][1+(1)/(x+2)][1+(1)/(x+3)][1+(1)/(x+4)] is (x+5)/(x+1) (b) (x+1)/(x+5) (c) 1+(1)/(x+5) (d) (1)/(x+5)

(x-1) / (2x + 1) + (2x + 1) / (x-1) = (5) / (2), x! =-(1) / (2), 1

The value of (1-x^4)/(1+x)+(1+x^2)/xxx1/(x(1-x)) is (a) 1 (b) 1-x^2 (c) 1/x (d) 1+x (e) None of these

If d/(dx) {f(x)}=1/(1+x^2) then d/(dx){f(x^3)} is a) (3x)/(1+x^3) b) (3x^2)/(1+x^6) c) (-6x^5)/(1+x^6)^2 d) (-6x^5)/(1+x^6)

The maximum value of f(x)=x/(4-x+x^2) on [-1,1] is (a) 1/4 (b) -1/3 (c) 1/6 (d) 1/5

The maximum value of f(x)=x/(4+x+x^2) on [-1,1] is (a) 1/4 (b) -1/3 (c) 1/6 (d) 1/5

The maximum value of f(x)=x/(4-x+x^2) on [-1,1] is (a) 1/4 (b) -1/3 (c) 1/6 (d) 1/5

(1)/(2x+1)+(1)/(3)(1)/((2x+1)^(3))+(1)/(5)(1)/((2x+1)^(5))+....=

(1)/(2x-1)+(1)/(3).(1)/((2x-1)^(3))+(1)/(5)(1)/((2x-1)^(5))+....=

Solve for x : 1/(x+1)+3/(5x+1)=5/(x+4), x != -1,-1/5,-4