Home
Class 12
MATHS
In a trapezium ABCD the vector B vec C ...

In a trapezium ABCD the vector `B vec C = lambda vec(AD).` If `vec p = A vec C + vec(BD)` is coillinear with `vec(AD)` such that `vec p = mu vec (AD),` then

Promotional Banner

Similar Questions

Explore conceptually related problems

In a trapezium ABCD the vector B vec C = alpha vec(AD). If vec p = A vec C + vec(BD) is coillinear with vec(AD) such that vec p = mu vec (AD), then

ABCDEF is a regular hexagon. Find the vector vec AB + vec AC + vec AD + vec AE + vec AF in terms of the vector vec AD

ABCDEF is a regular hexagon. Find the vector vec AB + vec AC + vec AD + vec AE + vec AF in terms of the vector vec AD

Let lambda = vec a xx (vec b + vec c), vec mu = vec b xx (vec c + vec a) and vec nu = vec c xx (vec a + vec b). Then

Given a parallelogram ABCD . If |vec(AB)|=a, |vec(AD)| = b & |vec(AC)| = c , then vec(DB) . vec(AB) has the value

Given a parallelogram ABCD . If |vec(AB)|=a, |vec(AD)| = b & |vec(AC)| = c , then vec(DB) . vec(AB) has the value

If ABCD is a parallelogram then vec(AB) + vec(AD) + vec(CB) + vec(CD) = …………………… .

If [ 2 vec (a) - 3 vec(b) vec( c ) vec(d)] =lambda [vec(a) vec(c ) vec(d) ] + mu [ vec(b) vec( c ) vec( d) ] , then 2 lambda + 3 mu=

If the vectors vec a+vec b+vec c,vec a+lambdavec b+2vec c,-vec a+vec b+vec c are linearly dependent then lambda