Home
Class 12
MATHS
The probability that sin^(-1)(sinx)+cos^...

The probability that `sin^(-1)(sinx)+cos^(-1)(cosy)` is an integer `x,y in {1,2,3,4}` is

Promotional Banner

Similar Questions

Explore conceptually related problems

The probability that sin^(-1)(sin x)+cos^(-1)(cos y) is an integer x,y in(1,2,3,4), is

prove that 1-1/2(sin2x)=(sin^3 x +cos^3 x)/(sinx +cosx)

(sin^(3)x)/(1 + cosx) + (cos^(3)x)/(1 - sinx) =

(sin^(3)x)/(1 + cosx) + (cos^(3)x)/(1 - sinx) =

(sin^(3)x)/(1 + cosx) + (cos^(3)x)/(1 - sinx) =

(sin^(3)x)/(1 + cosx) + (cos^(3)x)/(1 - sinx) =

If sin^(-1)x+sin^(-1)y=(2pi)/3 , then cos^(-1)x+cos^(-1)y is equal to

If sinx + sin y=(1)/(2) and cos x+cos y=1 , then tan (x+y)=