Home
Class 12
MATHS
Tangent at (1,e) on the curve y=x\ e^(x^...

Tangent at `(1,e)` on the curve `y=x\ e^(x^2)`, also passes through the point (a) `((4)/(3),2e)` (b) `((5)/(3),e)` (c) `((4)/(3),3e)` (d) `((3)/(4),3e)`

Promotional Banner

Similar Questions

Explore conceptually related problems

Tangent at (1,e) on the curve y=x backslash e^(x^(2)), also passes through the point (a) ((4)/(3),2e) (b) ((5)/(3),e)(c)((4)/(3),3e) (d) ((3)/(4),3e)

The point on the curv3e y = sqrt(4x-3) -1, at which the slope of the tangent is 2/3 , is

The slope of the tangent to the curve y^2e^(xy) =9e^(-3)x^2 at (-1,3) is

The area bounded by the curve y=x(1-log_(e)x) and x-axis is (a) (e^(2))/(4) (b) (e^(2))/(2) (c) (e^(2)-e)/(2) (d) (e^(2)-e)/(4)

int x^2 . e^(x^3) dx = (a) e^(x^3) + C (b) e^(x^2) + C (c) 1/3 e^(x^3) + C (d) 1/3 e^(x^2) + C

The area bounded by the curve y=x(1-log_(e)x) and x-axis is a) (e^(2))/(4) b) (e^(2))/(2) c) (e^(2)-e)/(2) d) (e^(2)-e)/(4)

The slope of the tangent to the curve y ^(2) e ^(xy) = 9e ^(-3) x ^(2) at (-1 ,3) is

int(x+3)/((x+4)^2)e^x\ dx= a. (e^x)/(x+4)+C (b) (e^x)/(x+3)+C (c) 1/((x+4)^2)+C (d) (e^x)/((x+4)^2)+C