Home
Class 12
MATHS
Let f(x)=1+ 2 cos x +3 sinx. If real nu...

Let `f(x)=1+ 2 cos x +3 sinx`. If real numbers `a,b,c` are such that `af(x)+bf(c+x)=1` holds for any `x in R` then `(b cos c)/a=`

Promotional Banner

Similar Questions

Explore conceptually related problems

Let cos^(4)x=a cos(4x)+b cos(2x)+c where a,b,c are constants then

if for nonzero x , af(x) + bf(1/x) =1/x-5 , where a!=b then f(2) =

Let f(x) = a x^2 + bx + c , where a, b, c in R, a!=0 . Suppose |f(x)| leq1, x in [0,1] , then

Let f(x) = a x^2 + bx + c , where a, b, c in R, a!=0 . Suppose |f(x)| leq1, x in [0,1] , then

Let f(x) = a x^2 + bx + c , where a, b, c in R, a!=0 . Suppose |f(x)| leq1, x in [0,1] , then

Let f(x) = a x^2 + bx + c , where a, b, c in R, a!=0 . Suppose |f(x)| leq1, x in [0,1] , then

Let f(x) =2x^(2) +5x +1 .If we write f(x ) as f(x) = a (x+1) (x-2) +b(x-2)(x-1)+c (x-1)(x+1) for real numbers a , b,c then -

Let f(x)=a x^2+bx +c a ,b ,c in R . If f(x) takes real values for real values of x and non-real values for non-real values of x , then (a) a=0 (b) b=0 (c) c=0 (d) nothing can be said about a ,b ,c .

Let f(x)=a x^2+bx +c a ,b ,c in R . If f(x) takes real values for real values of x and non-real values for non-real values of x , then (a) a=0 (b) b=0 (c) c=0 (d) nothing can be said about a ,b ,c .

Statement-1: If a, b, c are distinct real numbers, then a((x-b)(x-c))/((a-b)(a-c))+b((x-c)(x-a))/((b-c)(b-a))+c((x-a)(x-b))/((c-a)(c-b))=x for each real x. Statement-2: If a, b, c in R such that ax^(2) + bx + c = 0 for three distinct real values of x, then a = b = c = 0 i.e. ax^(2) + bx + c = 0 for all x in R .