Home
Class 11
MATHS
if the line xcos alpha+ysinalpha =p be a...

if the line `xcos alpha+ysinalpha =p` be a normal to the hyperbola `b^2x^2-a^2y^2=a^2b^2`, shopw that, `p^2(a^2sec^2alpha-b^2cosec^2alpha)=(a^2+b^2)^2`

Promotional Banner

Similar Questions

Explore conceptually related problems

If the line x cos alpha+ y sin alpha=p be a normal to the hyperbola b^(2)x^(2)-a^(2)y^(2)=a^(2)b^(2), show that, p^(2)(a^(2) sec ^(2) alpha- b^(2)"cosec"^(2) alpha)=(a^(2)+b^(2))^(2)

Line xcos alpha +y sin alpha =p is a normal to the hyperbola (x^2)/(a^2)-(y^2)/(b^2)=1 , if

If the straight line xcosalpha+ysinalpha=p touches the curve (x^2)/(a^2)+(y^2)/(b^2)=1 , then prove that a^2\ cos^2alpha+b^2\ s in^2alpha=p^2 .

If the straight line xcosalpha+ysinalpha=p touches the curve (x^2)/(a^2)+(y^2)/(b^2)=1 , then prove that a^2cos^2alpha+b^2sin^2alpha=p^2 .

If the straight line xcosalpha+ysinalpha=p touches the curve (x^2)/(a^2)-(y^2)/(b^2)=1, then prove that a^2cos^2alpha-b^2sin^2alpha=p^2dot

If the straight line xcosalpha+ysinalpha=p touches the curve (x^2)/(a^2)+(y^2)/(b^2)=1 , then prove that a^2cos^2alpha+b^2sin^2alpha=p^2dot

If the straight line xcosalpha+ysinalpha=p touches the curve (x^2)/(a^2)+(y^2)/(b^2)=1 , then prove that a^2\ cos^2alpha+b^2\ sin^2alpha=p^2 .

If the straight line xcosalpha+ysinalpha=p touches the curve (x^2)/(a^2)+(y^2)/(b^2)=1 , then prove that a^2cos^2alpha+b^2sin^2alpha=p^2dot

If the straight line xcosalpha+ysinalpha=p touches the curve (x^2)/(a^2)-(y^2)/(b^2)=1, then prove that a^2cos^2alpha-b^2sin^2alpha=p^2dot

If the straight line xcosalpha+ysinalpha=p touches the curve (x^2)/(a^2)+(y^2)/(b^2)=1, then prove that a^2cos^2alpha+b^2sin^2alpha=p^2dot