Home
Class 11
MATHS
If sin (alpha - beta) =1/2 and cos (alph...

If `sin (alpha - beta) =1/2 and cos (alpha + beta) =1/2,` where` alpha and beta` are positive acute angles, then `alpha and beta` are

A

`alpha =45^(@) , beta =15^(@)`

B

`alpha =15^(@), beta =45^(@)`

C

`alpha =60^(@) , beta=15^(@)`

D

`alpha = 15^(@), beta =60^(@)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the values of angles \( \alpha \) and \( \beta \) given that \( \sin(\alpha - \beta) = \frac{1}{2} \) and \( \cos(\alpha + \beta) = \frac{1}{2} \). ### Step-by-step Solution: 1. **Identify the angles for sine and cosine values:** - We know that \( \sin(30^\circ) = \frac{1}{2} \). Therefore, from the equation \( \sin(\alpha - \beta) = \frac{1}{2} \), we can write: \[ \alpha - \beta = 30^\circ \quad \text{(Equation 1)} \] 2. **Identify the angle for cosine:** - We also know that \( \cos(60^\circ) = \frac{1}{2} \). Thus, from the equation \( \cos(\alpha + \beta) = \frac{1}{2} \), we can write: \[ \alpha + \beta = 60^\circ \quad \text{(Equation 2)} \] 3. **Set up the equations:** - Now we have two equations: \[ \alpha - \beta = 30^\circ \quad \text{(1)} \] \[ \alpha + \beta = 60^\circ \quad \text{(2)} \] 4. **Add the two equations:** - Adding Equation 1 and Equation 2: \[ (\alpha - \beta) + (\alpha + \beta) = 30^\circ + 60^\circ \] \[ 2\alpha = 90^\circ \] \[ \alpha = 45^\circ \] 5. **Substitute to find \( \beta \):** - Now substitute \( \alpha = 45^\circ \) back into Equation 1: \[ 45^\circ - \beta = 30^\circ \] \[ \beta = 45^\circ - 30^\circ = 15^\circ \] 6. **Final values:** - Thus, we find: \[ \alpha = 45^\circ, \quad \beta = 15^\circ \] ### Conclusion: The values of the angles are \( \alpha = 45^\circ \) and \( \beta = 15^\circ \).
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC FUNCTIONS

    TARGET PUBLICATION|Exercise CRITICAL THINKING|39 Videos
  • TRIGONOMETRIC FUNCTIONS

    TARGET PUBLICATION|Exercise COMPETITIVE THINKING|33 Videos
  • TRIGONOMETRIC FUNCTIONS OF COMPOUND ANGLES

    TARGET PUBLICATION|Exercise EVALUATION TEST|12 Videos

Similar Questions

Explore conceptually related problems

If cos alpha=tan beta and cos beta=tan alpha where alpha and beta are acute angles then sin alpha

If sin alpha=1/2 and cos beta=1/2 then alpha+beta=

If sin (alpha + beta)=1, sin (alpha- beta)= (1)/(2) , then tan (alpha + 2beta) tan (2alpha + beta) =

sin alpha sin beta-cos alpha cos beta=1 then show that tan alpha+tan beta=0

sin alpha+sin beta=(1)/(4) and cos alpha+cos beta=(1)/(3) The value of cos(alpha+beta) is

If sin alpha sin beta-cos alpha cos beta+1=0, then the value of 1+cot alpha tan beta is

If sin(alpha+beta)=1,sin(alpha-beta)=(1)/(2) then tan(alpha+2 beta)tan(2 alpha+beta)=

If sin(alpha+beta)=1 and sin(alpha-beta)=(1)/(2), where 0<=,beta<=(pi)/(2) ,then find the values of tan(alpha+2 beta) and tan(2 alpha+beta)