Home
Class 11
MATHS
If tan theta =-(1)/(sqrt10)and theta lie...

If `tan theta =-(1)/(sqrt10)and theta` lies in the fourth quadrant, then `sec theta =`

A

`(1)/(sqrt11)`

B

`(-1)/(sqrt11)`

C

`sqrt((11)/(10))`

D

`-sqrt((10)/(11))`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \( \sec \theta \) given that \( \tan \theta = -\frac{1}{\sqrt{10}} \) and that \( \theta \) lies in the fourth quadrant. ### Step-by-Step Solution: 1. **Identify the given values:** We know that: \[ \tan \theta = -\frac{1}{\sqrt{10}} \] Since \( \theta \) is in the fourth quadrant, \( \tan \theta \) is negative. 2. **Use the Pythagorean identity:** We can use the identity: \[ \tan^2 \theta + 1 = \sec^2 \theta \] Substituting the value of \( \tan \theta \): \[ \left(-\frac{1}{\sqrt{10}}\right)^2 + 1 = \sec^2 \theta \] 3. **Calculate \( \tan^2 \theta \):** \[ \tan^2 \theta = \left(-\frac{1}{\sqrt{10}}\right)^2 = \frac{1}{10} \] 4. **Substitute into the identity:** \[ \frac{1}{10} + 1 = \sec^2 \theta \] 5. **Convert 1 to a fraction:** \[ 1 = \frac{10}{10} \] So, \[ \sec^2 \theta = \frac{1}{10} + \frac{10}{10} = \frac{11}{10} \] 6. **Take the square root:** \[ \sec \theta = \sqrt{\frac{11}{10}} \] 7. **Simplify the expression:** \[ \sec \theta = \frac{\sqrt{11}}{\sqrt{10}} = \frac{\sqrt{11}}{\sqrt{10}} \cdot \frac{\sqrt{10}}{\sqrt{10}} = \frac{\sqrt{11 \cdot 10}}{10} = \frac{\sqrt{110}}{10} \] However, since we are interested in the secant value in the fourth quadrant, we take the positive root: \[ \sec \theta = \frac{\sqrt{11}}{\sqrt{10}} = \frac{\sqrt{11}}{10} \] ### Final Answer: \[ \sec \theta = \frac{\sqrt{11}}{\sqrt{10}} = \frac{\sqrt{11}}{10} \]
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC FUNCTIONS

    TARGET PUBLICATION|Exercise CRITICAL THINKING|39 Videos
  • TRIGONOMETRIC FUNCTIONS

    TARGET PUBLICATION|Exercise COMPETITIVE THINKING|33 Videos
  • TRIGONOMETRIC FUNCTIONS OF COMPOUND ANGLES

    TARGET PUBLICATION|Exercise EVALUATION TEST|12 Videos

Similar Questions

Explore conceptually related problems

if tan theta=-(1)/(sqrt(10)) and theta lies in the fourth quadrant then cos theta

If tan theta = -1/sqrt(5) and theta lies in the fourth quadrant, then: cos theta =

If tan theta = (1)/(sqrt5) and theta lies in the first quadrant, the value of costheta is :

If tan theta=(1)/sqrt(5) and theta lies in the first quadrant, the value of cos theta is :

If sin theta =(24)/(25) and theta lies in the second quadrant, then sec theta + tan theta=

If tan theta=-(1)/(sqrt(5)) and theta lies in the IVB quadrant,then the value of cos theta is (sqrt(5))/(sqrt(6))b(2)/(sqrt(6))c*(1)/(2)d*(1)/(sqrt(6))

If sin theta=(12)/(13) and theta lies in the second quadrant,find the value of sec theta+tan theta

If cos theta=(3)/(5) and theta lies in the fourth quadrant find the value of cos ec theta+cot theta

If sin theta =(21)/(29) and theta lies in the second quadrant, find the value of sec theta + tan theta is

If cos theta. cosec theta=-1 and theta lies in fourth quadrant then find cos theta and cosec theta