Home
Class 11
MATHS
If x= sec theta + tan theta, then x+1/x=...

If `x= sec theta + tan theta,` then `x+1/x=.`

A

1

B

`2 sec theta`

C

`2`

D

`2 tan theta`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem where \( x = \sec \theta + \tan \theta \) and we need to find \( x + \frac{1}{x} \), we can follow these steps: ### Step 1: Write down the expression for \( x \) Given: \[ x = \sec \theta + \tan \theta \] ### Step 2: Find \( \frac{1}{x} \) To find \( \frac{1}{x} \), we can use the identity: \[ \frac{1}{x} = \frac{1}{\sec \theta + \tan \theta} \] We can multiply the numerator and denominator by \( \sec \theta - \tan \theta \) (the conjugate of the denominator): \[ \frac{1}{x} = \frac{\sec \theta - \tan \theta}{(\sec \theta + \tan \theta)(\sec \theta - \tan \theta)} = \frac{\sec \theta - \tan \theta}{\sec^2 \theta - \tan^2 \theta} \] Using the identity \( \sec^2 \theta - \tan^2 \theta = 1 \): \[ \frac{1}{x} = \sec \theta - \tan \theta \] ### Step 3: Add \( x \) and \( \frac{1}{x} \) Now we can find \( x + \frac{1}{x} \): \[ x + \frac{1}{x} = (\sec \theta + \tan \theta) + (\sec \theta - \tan \theta) \] The \( \tan \theta \) terms cancel out: \[ x + \frac{1}{x} = 2 \sec \theta \] ### Final Result Thus, we have: \[ x + \frac{1}{x} = 2 \sec \theta \]
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC FUNCTIONS

    TARGET PUBLICATION|Exercise CRITICAL THINKING|39 Videos
  • TRIGONOMETRIC FUNCTIONS

    TARGET PUBLICATION|Exercise COMPETITIVE THINKING|33 Videos
  • TRIGONOMETRIC FUNCTIONS OF COMPOUND ANGLES

    TARGET PUBLICATION|Exercise EVALUATION TEST|12 Videos

Similar Questions

Explore conceptually related problems

If 4x = sec theta and 4/x = tan theta , then 8(x^2 -1/x^2) is

If x = a sec theta, y = b tan theta " then " (dy)/(dx) = ?

If x=a sec theta,y=b tan theta, then prove that (x^(2))/(a^(2))-(y^(2))/(b^(2))=1

If sec theta+tan theta=x then sec theta=

if x = a sec theta + b tan theta y = b sec theta + a tan theta then x^(2) - y^(2) is equal to

If 4x = sec theta and (4)/(x) = tan theta then 8 (x^(2) - (1)/(x^(2))) is

If sec theta + tan theta =x then sin theta is equal to

If x=a sec theta and y=b tan theta , eliminate theta .

If sec theta= x+1/(4x) then sec theta+ tan theta= a, x, 1/(x), b. 2x, 1/(2x), c.-2x, 1/(2x), d.-1/x, x