Home
Class 11
MATHS
cot x+ tan x=...

`cot x+ tan x=`

A

`cot 2x`

B

`2 cot ^(2) x`

C

`sec x cosec x`

D

`cot ^(2) 2x`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( \cot x + \tan x \), we can follow these steps: ### Step 1: Write the definitions of cotangent and tangent We know that: \[ \cot x = \frac{\cos x}{\sin x} \] \[ \tan x = \frac{\sin x}{\cos x} \] ### Step 2: Substitute the definitions into the equation Substituting the definitions into the equation gives us: \[ \cot x + \tan x = \frac{\cos x}{\sin x} + \frac{\sin x}{\cos x} \] ### Step 3: Find a common denominator The common denominator for the two fractions is \( \sin x \cos x \). Thus, we can rewrite the equation as: \[ \frac{\cos^2 x + \sin^2 x}{\sin x \cos x} \] ### Step 4: Use the Pythagorean identity We know from the Pythagorean identity that: \[ \cos^2 x + \sin^2 x = 1 \] Substituting this into our equation gives: \[ \frac{1}{\sin x \cos x} \] ### Step 5: Rewrite the expression We can rewrite \( \frac{1}{\sin x \cos x} \) using the identities for cosecant and secant: \[ \frac{1}{\sin x \cos x} = \csc x \sec x \] ### Conclusion Thus, we find that: \[ \cot x + \tan x = \csc x \sec x \]
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC FUNCTIONS

    TARGET PUBLICATION|Exercise CRITICAL THINKING|39 Videos
  • TRIGONOMETRIC FUNCTIONS

    TARGET PUBLICATION|Exercise COMPETITIVE THINKING|33 Videos
  • TRIGONOMETRIC FUNCTIONS OF COMPOUND ANGLES

    TARGET PUBLICATION|Exercise EVALUATION TEST|12 Videos

Similar Questions

Explore conceptually related problems

cot x-2 cot 2x = tan x

The system of equations tan x=a cot x, tan 2x=b cos y

Evaluate int(4 cot x - 5 tan x)^2 dx

Solve 2 cot 2x -3 cot 3x = tan 2x .

Is |tan x+cot x|<|tan x|+|cot x| true for any x? If it is true,then find the values of x.

The area bounded by the curve f(x)=||tan x+cot x|-|tan x-cot x|| between the lines x=0,x=(pi)/(2) and the X - axis is

If the equation tan (P cot x)=cot (P tan x) has a solution in x in (0, pi)-{pi/2} , then prove that P le pi/4 .

If tan ax + cot ax and |tan x| + |cot x| are periodic functions of the same fundamental then a equals

cot x-2cot2x=tan x