Home
Class 11
MATHS
If x=a cos theta + b sin theta and y=a ...

If `x=a cos theta + b sin theta and y=a sin theta - b cos theta.` then` a ^(2) +b^(2) ` is equal to

A

`x ^(2) -y^(2)`

B

`x ^(2) +y^(2)`

C

`(x+y)^(2)`

D

`(x-y)^(2)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we start with the given equations: 1. \( x = a \cos \theta + b \sin \theta \) 2. \( y = a \sin \theta - b \cos \theta \) We need to find the value of \( a^2 + b^2 \). ### Step 1: Square both equations First, we square both equations: \[ x^2 = (a \cos \theta + b \sin \theta)^2 \] Expanding this using the formula \( (p + q)^2 = p^2 + q^2 + 2pq \): \[ x^2 = a^2 \cos^2 \theta + b^2 \sin^2 \theta + 2ab \cos \theta \sin \theta \] Now for the second equation: \[ y^2 = (a \sin \theta - b \cos \theta)^2 \] Expanding this: \[ y^2 = a^2 \sin^2 \theta + b^2 \cos^2 \theta - 2ab \sin \theta \cos \theta \] ### Step 2: Combine the equations Now we add both squared equations: \[ x^2 + y^2 = (a^2 \cos^2 \theta + b^2 \sin^2 \theta + 2ab \cos \theta \sin \theta) + (a^2 \sin^2 \theta + b^2 \cos^2 \theta - 2ab \sin \theta \cos \theta) \] ### Step 3: Simplify the equation Combine like terms: \[ x^2 + y^2 = a^2 (\cos^2 \theta + \sin^2 \theta) + b^2 (\sin^2 \theta + \cos^2 \theta) + (2ab - 2ab) \sin \theta \cos \theta \] Using the identity \( \cos^2 \theta + \sin^2 \theta = 1 \): \[ x^2 + y^2 = a^2 \cdot 1 + b^2 \cdot 1 \] Thus, we have: \[ x^2 + y^2 = a^2 + b^2 \] ### Conclusion Therefore, we conclude that: \[ a^2 + b^2 = x^2 + y^2 \] ### Final Answer The value of \( a^2 + b^2 \) is equal to \( x^2 + y^2 \). ---
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC FUNCTIONS

    TARGET PUBLICATION|Exercise CRITICAL THINKING|39 Videos
  • TRIGONOMETRIC FUNCTIONS

    TARGET PUBLICATION|Exercise COMPETITIVE THINKING|33 Videos
  • TRIGONOMETRIC FUNCTIONS OF COMPOUND ANGLES

    TARGET PUBLICATION|Exercise EVALUATION TEST|12 Videos

Similar Questions

Explore conceptually related problems

If a cos theta + b sin theta =4 and a sin theta- b cos theta = 3 " then" a^(2) + b^(2) is equal to

If a cos theta+b sin theta=3 and a sin theta-b cos theta=4 then a^(2)+b^(2) has the value

If a cos theta+b sin tan theta=3 and a sin theta-b cos theta=4, then a^(2)+b^(2) has the value

If x = a cos theta - b sin theta and y = a sin theta + b cos theta, prove that x^2 + y^2 = a^2 + b^2.

If x = a cos theta + b sin theta and y=a sin theta-b cos theta , the value of x^2+y^2 is: यदि x = a cos theta + b sin theta तथा y=a sin theta-b cos theta है, तो x^2+y^2 का मान ज्ञात करें |

If x=a cos theta-b sin theta and y=a sin theta+b cos theta then prove that :x^(2)+y^(2)=a^(2)+b^(2)

If a cos theta - b sin theta =c, " then" a sin theta + b cos theta is equal to