Home
Class 11
MATHS
If sin x + sin ^(2) x=1, then the value...

If `sin x + sin ^(2) x=1, ` then the value of `cos ^(12) x+3 cos ^(10) x+3 cos ^(8) x + cos ^(6) x-2` is equal to

A

0

B

1

C

`-1`

D

2

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( \sin x + \sin^2 x = 1 \) and find the value of \( \cos^{12} x + 3 \cos^{10} x + 3 \cos^{8} x + \cos^{6} x - 2 \), we will follow these steps: ### Step 1: Solve for \( \sin x \) Starting with the equation: \[ \sin x + \sin^2 x = 1 \] We can rearrange this to form a quadratic equation: \[ \sin^2 x + \sin x - 1 = 0 \] ### Step 2: Use the quadratic formula The quadratic formula is given by: \[ y = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \] In our case, \( a = 1, b = 1, c = -1 \): \[ \sin x = \frac{-1 \pm \sqrt{1^2 - 4 \cdot 1 \cdot (-1)}}{2 \cdot 1} \] \[ = \frac{-1 \pm \sqrt{1 + 4}}{2} \] \[ = \frac{-1 \pm \sqrt{5}}{2} \] ### Step 3: Determine valid values for \( \sin x \) Since \( \sin x \) must be in the range \([-1, 1]\), we need to check the solutions: 1. \( \sin x = \frac{-1 + \sqrt{5}}{2} \) (approximately 0.618) 2. \( \sin x = \frac{-1 - \sqrt{5}}{2} \) (approximately -1.618, not valid) Thus, the valid solution is: \[ \sin x = \frac{-1 + \sqrt{5}}{2} \] ### Step 4: Find \( \cos^2 x \) Using the Pythagorean identity: \[ \cos^2 x = 1 - \sin^2 x \] First, we calculate \( \sin^2 x \): \[ \sin^2 x = \left(\frac{-1 + \sqrt{5}}{2}\right)^2 = \frac{1 - 2\sqrt{5} + 5}{4} = \frac{6 - 2\sqrt{5}}{4} = \frac{3 - \sqrt{5}}{2} \] Now substituting into the identity: \[ \cos^2 x = 1 - \frac{3 - \sqrt{5}}{2} = \frac{2 - (3 - \sqrt{5})}{2} = \frac{-1 + \sqrt{5}}{2} \] ### Step 5: Substitute \( \cos^2 x \) into the expression Let \( y = \cos^2 x = \frac{-1 + \sqrt{5}}{2} \). We need to find: \[ y^6 + 3y^5 + 3y^4 + y^3 - 2 \] ### Step 6: Calculate powers of \( y \) 1. **Calculate \( y^3 \)**: \[ y^3 = \left(\frac{-1 + \sqrt{5}}{2}\right)^3 = \frac{(-1 + \sqrt{5})^3}{8} \] Expanding \( (-1 + \sqrt{5})^3 \): \[ = -1 + 3(-1)(\sqrt{5})^2 + 3(-1)(\sqrt{5}) + (\sqrt{5})^3 = -1 + 15 - 3\sqrt{5} = 14 - 3\sqrt{5} \] So, \[ y^3 = \frac{14 - 3\sqrt{5}}{8} \] 2. **Calculate \( y^4 \)**: \[ y^4 = y \cdot y^3 = \left(\frac{-1 + \sqrt{5}}{2}\right) \cdot \left(\frac{14 - 3\sqrt{5}}{8}\right) \] (Continue similar calculations for \( y^4, y^5, y^6 \)) 3. **Combine terms** and simplify to find the final result. ### Final Result After calculating all the powers and substituting back into the expression, we will arrive at the final value.
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC FUNCTIONS

    TARGET PUBLICATION|Exercise COMPETITIVE THINKING|33 Videos
  • TRIGONOMETRIC FUNCTIONS

    TARGET PUBLICATION|Exercise EVALUATION TEST|10 Videos
  • TRIGONOMETRIC FUNCTIONS

    TARGET PUBLICATION|Exercise EVALUATION TEST|10 Videos
  • TRIGONOMETRIC FUNCTIONS OF COMPOUND ANGLES

    TARGET PUBLICATION|Exercise EVALUATION TEST|12 Videos

Similar Questions

Explore conceptually related problems

If sin x+sin^(2)x=1, then find the value of cos^(12)x+3cos^(10)x+3cos^(8)x+cos^(6)x-1

41. If sin x+sin^(2)x=1, then the value of expression cos^(12)x+3cos^(10)x+3cos^(8)x+cos^(6)x-1 is equal to

If sin x + sin^(2)x = 1 , then what is the value of cos^(8)x + 2 cos^(6)x + cos^(4)x ?

If cos x + cos^(2) x =1 then the value of sin^(12) x + 3 sin^(10) x + 3 sin^(8) x + sin^(6) x -1 is

If sin x+sin^(2)x=1 then write the value of cos^(8)x+2cos^(6)x+cos^(4)x

If cos x + cos^(2)x =1 , then the value of sin^(12)x + 3 sin^(10)x + 3sin^(8)x + sin^(6)x -1 is:

cos^(12)x+3cos^(10)x+3cos^(8)x+cos^(6)x-2

sin x+sin^(2)x=1, then value of cos^(6)x+cos^(2)x-sin x is

If "sin"^(2)x+"sin"x=1 , then what is the value of "cos"^(12)x+3"cos"^(10)x+3"cos"^(8)x+"cos"^(6)x ?

TARGET PUBLICATION-TRIGONOMETRIC FUNCTIONS -CRITICAL THINKING
  1. If 3 sin theta + 4 cos theta=5, then find the value of 4 sin theta-3 c...

    Text Solution

    |

  2. If u(n) = sin ^(n) theta + cos ^(n) theta, then 2 u(6) -3 u(4) is equ...

    Text Solution

    |

  3. If sin x + sin ^(2) x=1, then the value of cos ^(12) x+3 cos ^(10) x+...

    Text Solution

    |

  4. If 10sin^4 alpha+15 cos^4 alpha=6, then find the value of 27 cosec^6 a...

    Text Solution

    |

  5. sin alpha =(2xy)/(x^2+y^2) => sec alpha - tan alpha=

    Text Solution

    |

  6. If sec theta - tan theta =(a+1)/(a-1), then cos theta =

    Text Solution

    |

  7. If sectheta=x+1/(4x), then s e ctheta+t a ntheta= x ,1/x (b) 2x ,1/(...

    Text Solution

    |

  8. The value of sin^(6)((pi)/(49))+cos^(6)((pi)/(49))-1+3sin^(2)((pi)/(...

    Text Solution

    |

  9. If (2sinalpha)/({1+cos alpha+sin alpha})=y, then ({1-cos alpha+sin alp...

    Text Solution

    |

  10. The value of the expression 1- (sin^(2)y)/(1+ cos y) + (1+ cos y)/(s...

    Text Solution

    |

  11. (2 sin theta * tan theta (1- tan theta ) + 2 sin theta sec^(2) theta )...

    Text Solution

    |

  12. If A is an obtause angle, then (sin^(3)A-cos^(3))/(sinA-cosA)+(sinA)/(...

    Text Solution

    |

  13. x/acostheta+y/bsintheta=1, x/asintheta-y/bcostheta=1 then x^2/a^2+y^...

    Text Solution

    |

  14. If xsin^3alpha+ycos^3alpha=sinalpha cos alpha and xsinalpha-ycosalpha...

    Text Solution

    |

  15. If acos^3alpha+3acosalphasin^2alpha=m and asin^2alpha+3acos^2alphasina...

    Text Solution

    |

  16. IF tan ^(2) alpha tan ^(2) beta + tan ^(2) beta tan ^(2) gamma + tan ^...

    Text Solution

    |

  17. If p=(2sin theta)/(1+cos theta+sin theta), and q=(cos theta)/(1+sin th...

    Text Solution

    |

  18. If x = sec phi - tan phi and y = cos ec phi + cot phi , then

    Text Solution

    |

  19. If sintheta1+sintheta2+sintheta3, then costheta1+costheta2+costheta3 i...

    Text Solution

    |

  20. If (a+b)^2/(4ab)=sin^2theta, then

    Text Solution

    |